A118416
Triangle read by rows: T(n,k) = (2*k-1)*2^(n-1), 0 < k <= n.
Original entry on oeis.org
1, 2, 6, 4, 12, 20, 8, 24, 40, 56, 16, 48, 80, 112, 144, 32, 96, 160, 224, 288, 352, 64, 192, 320, 448, 576, 704, 832, 128, 384, 640, 896, 1152, 1408, 1664, 1920, 256, 768, 1280, 1792, 2304, 2816, 3328, 3840, 4352, 512, 1536, 2560, 3584, 4608, 5632, 6656, 7680
Offset: 1
Triangle begins:
1;
2, 6;
4, 12, 20;
8, 24, 40, 56;
16, 48, 80, 112, 144;
32, 96, 160, 224, 288, 352;
64, 192, 320, 448, 576, 704, 832;
-
a118416 n k = a118416_tabl !! (n-1) !! (k-1)
a118416_row 1 = [1]
a118416_row n = (map (* 2) $ a118416_row (n-1)) ++ [a014480 (n-1)]
a118416_tabl = map a118416_row [1..]
-- Reinhard Zumkeller, Jan 22 2012
-
A118416 := proc(n,k) 2^(n-1)*(2*k-1) ; end proc: # R. J. Mathar, Sep 04 2011
-
Flatten[Table[(2k-1)2^(n-1),{n,10},{k,n}]] (* Harvey P. Dale, Aug 26 2014 *)
-
from math import isqrt
def A118416(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(1-a)+(n<<1)-1<Chai Wah Wu, Jun 20 2025
A117303
Self-inverse permutation of the natural numbers based on the bijection (2*x-1)*2^(y-1) <--> (2*y-1)*2^(x-1).
Original entry on oeis.org
1, 3, 2, 5, 4, 6, 8, 7, 16, 12, 32, 10, 64, 24, 128, 9, 256, 48, 512, 20, 1024, 96, 2048, 14, 4096, 192, 8192, 40, 16384, 384, 32768, 11, 65536, 768, 131072, 80, 262144, 1536, 524288, 28, 1048576, 3072, 2097152, 160, 4194304, 6144, 8388608, 18, 16777216
Offset: 1
-
a:= n-> (j-> (2*j+1)*2^((n/2^j-1)/2))(padic[ordp](n, 2)):
seq(a(n), n=1..50); # Alois P. Heinz, Jan 23 2019
-
a[n_] := (2 IntegerExponent[2 n, 2] - 1)*2^((n/2^IntegerExponent[n, 2] + 1)/2 - 1); Array[a, 50] (* Jean-François Alcover, Mar 12 2019 *)
-
def A117303(n): return (((m:=(n&-n).bit_length())<<1)-1)*(1<<(n>>m)) # Chai Wah Wu, Jul 14 2022
A052951
Expansion of (1 + x - 2*x^2)/(1 - 2*x)^2.
Original entry on oeis.org
1, 5, 14, 36, 88, 208, 480, 1088, 2432, 5376, 11776, 25600, 55296, 118784, 253952, 540672, 1146880, 2424832, 5111808, 10747904, 22544384, 47185920, 98566144, 205520896, 427819008, 889192448, 1845493760, 3825205248, 7918845952
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- O. Aichholzer, A. Asinowski, and T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1021.
- Agustín Moreno Cañadas, Hernán Giraldo, Gabriel Bravo Rios, On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
-
Concatenation([1], List([1..40], n-> 2^(n-1)*(2*n+3) )); # G. C. Greubel, Oct 21 2019
-
I:=[1, 5, 14]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
-
spec:= [S,{S=Prod(Union(Sequence(Union(Z,Z)),Z),Sequence(Union(Z,Z)))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
seq(`if`(n=0, 1, 2^(n-1)*(2*n+3)), n=0..40); # G. C. Greubel, Oct 21 2019
-
CoefficientList[Series[(1+x-2*x^2)/(1-2*x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
LinearRecurrence[{4,-4}, {1,5,14}, 40] (* G. C. Greubel, Oct 21 2019 *)
-
x='x+O('x^40); Vec((1+x-2*x^2)/(1-2*x)^2) \\ Altug Alkan, Mar 03 2018
-
[1]+[2^(n-1)*(2*n+3) for n in (1..40)] # G. C. Greubel, Oct 21 2019
A118414
a(n) = (2*n - 1) * (2^n - 1).
Original entry on oeis.org
1, 9, 35, 105, 279, 693, 1651, 3825, 8687, 19437, 42987, 94185, 204775, 442341, 950243, 2031585, 4325343, 9175005, 19398619, 40894425, 85983191, 180355029, 377487315, 788529105, 1644167119, 3422552013, 7113539531, 14763950025, 30601641927, 63350767557, 130996502467, 270582939585
Offset: 1
The triangle T(r,c) for n=4 has row(1)=7; row(2) = 5, 9; row(3) = 3, 14, 11; row(4) = 1, 17, 25, 13, and a sum of 7+5+9+...+13 = 105 = a(4). - _J. M. Bergot_, Oct 12 2012
-
[(2*n-1)*(2^n-1): n in [1..40]]; // Vincenzo Librandi, Dec 26 2010
-
Table[(2 n - 1) (2^n - 1), {n, 32}] (* or *)
Rest@ CoefficientList[Series[-x (-1 - 3 x + 6 x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 32}], x] (* Michael De Vlieger, Sep 26 2016 *)
LinearRecurrence[{6,-13,12,-4},{1,9,35,105},40] (* Harvey P. Dale, Sep 12 2023 *)
-
a(n)=(2*n-1)*(2^n-1) \\ Charles R Greathouse IV, Oct 12 2012
A118415
a(n) = (4*n - 3) * 2^(n - 1).
Original entry on oeis.org
1, 10, 36, 104, 272, 672, 1600, 3712, 8448, 18944, 41984, 92160, 200704, 434176, 933888, 1998848, 4259840, 9043968, 19136512, 40370176, 84934656, 178257920, 373293056, 780140544, 1627389952, 3388997632, 7046430720, 14629732352, 30333206528, 62813896704
Offset: 1
-
[(4*n-3)*2^(n-1): n in [1..40]]; // Vincenzo Librandi, Dec 26 2010
-
CoefficientList[Series[(1 + 6 x)/(-1 + 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, May 21 2014 *)
LinearRecurrence[{4,-4},{1,10},30] (* Harvey P. Dale, Sep 16 2022 *)
A219931
Coefficients related to an asymptotic expansion of the logarithm of the central binomial.
Original entry on oeis.org
1, 6, 5, 28, 9, 22, 13, 120, 17, 38, 21, 92, 25, 54, 29, 496, 33, 70, 37, 156, 41, 86, 45, 376, 49, 102, 53, 220, 57, 118, 61, 2016, 65, 134, 69, 284, 73, 150, 77, 632, 81, 166, 85, 348, 89, 182, 93, 1520, 97, 198, 101, 412, 105, 214, 109, 888, 113, 230, 117
Offset: 1
log(binomial(2*n,n)) = n*log(4) - (log(n)+log(Pi))/2 - 1/(8*a(1)*n) + 1/(32*a(2)*n^3) - 1/(128*a(3)*n^5) + 17/(512*a(4)*n^7) - 31/(2048*a(5)*n^9) + 691/(8192*a(6)*n^11) + O(1/n^13).
log(swing(n)) = n*log(2) - (1/2)*log(Pi) - (1/4)*(-1)^n*(2*log(n/2) + 1/(a(1)*n) - 1/(a(2)*n^3) + 1/(a(3)*n^5) - 17/(a(4)*n^7) + 31/(a(5)*n^9) - 691/(a(6)*n^11)) + O(1/n^13).
-
Coeff_list := proc(len) local n;
asympt(ln(n/2)/2+lnGAMMA(n/2+1/2)-lnGAMMA(n/2+1),n,2*len+3);
subs(n=1/n,simplify(convert(%,polynom)));
[seq(4*coeff(unapply(%,n)(n),n,2*k+1),k=0..len-1)] end:
A219931_list := n -> denom(Coeff_list(n)); A219931_list(59);
-
max = 60; s = Normal[Series[Log[x/2]/2+LogGamma[x/2+1/2]-LogGamma[x/2+1], {x, Infinity, 2*max}]] /. x -> 1/x; a[n_] := Denominator[4*Coefficient[s, x^(2*n-1), 1]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Feb 17 2014 *)
a[n_] := Denominator[2*EulerE[2*n-1, 1]/(2*n-1)]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 04 2014, after Peter Luschny *)
A277046
Triangle read by rows: T(n,k) = 2^n - n + k - 1 for n >= 1, with 1 <= k <= 2n-1.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 27, 28, 29, 30, 31, 32, 33, 34, 35, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519
Offset: 1
Triangle begins:
1;
2, 3, 4;
5, 6, 7, 8, 9;
12, 13, 14, 15, 16, 17, 18;
27, 28, 29, 30, 31, 32, 33, 34, 35;
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68;
...
Written as an isosceles triangle the sequence begins:
. 1;
. 2, 3, 4;
. 5, 6, 7, 8, 9;
. 12, 13, 14, 15, 16, 17, 18;
. 27, 28, 29, 30, 31, 32, 33, 34, 35;
. 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68;
..
-
Table[2^n-n+k-1,{n,10},{k,2n-1}]//Flatten (* Harvey P. Dale, Nov 27 2021 *)
Comments