cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 1364 results. Next

A007096 Expansion of theta_3 / theta_4.

Original entry on oeis.org

1, 4, 8, 16, 32, 56, 96, 160, 256, 404, 624, 944, 1408, 2072, 3008, 4320, 6144, 8648, 12072, 16720, 22976, 31360, 42528, 57312, 76800, 102364, 135728, 179104, 235264, 307672, 400704, 519808, 671744, 864960, 1109904, 1419456, 1809568, 2299832
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of 2n into parts with 2 types c, c* of each part. The even parts appears with multiplicity 1 for each type. The odd parts appears with multiplicity 2 (cc or c*c* but not cc*, that is, no mixing is allowed). E.g., a(4)=8 because of 44*, 22*, 211, 21*1*, 2*1*1*, 2*11, 111*1*. - Noureddine Chair, Jan 27 2005
a(n) is the number of pairs of overpartitions into odd parts where the sum of all parts is equal to n. - Jeremy Lovejoy, Aug 29 2020

Examples

			G.f. = 1 + 4*q + 8*q^2 + 16*q^3 + 32*q^4 + 56*q^5 + 96*q^6 + 160*q^7 + 256*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Self-convolution of A080054. - Vladeta Jovovic, Mar 22 2005

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(-1/4), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[( QPochhammer[ -q, q^2] / QPochhammer[ q, q^2])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - (-q)^k, {k, n}] / Product[ 1 - q^k, {k, n}])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = 1 + 4*x; for( k=2, n, B = A + x^2 * O(x^k); A += Pol(2 * subst(B, x, x^2)^2 - B - 1/B) / x / 8); polcoeff(A, n))}; /* Michael Somos, Jul 07 2005*/
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)))^2, n))}; /* Michael Somos, Jan 01 2006 */

Formula

Euler transform of period 4 sequence [4, -2, 4, 0, ...]. - Vladeta Jovovic, Mar 22 2005
Expansion of eta(q^2)^6 /(eta(q)^4 * eta(q^4)^2) in powers of q.
Expansion of phi(q) / phi(-q) = chi(q)^2 / chi(-q)^2 = psi(q)^2 / psi(-q)^2 = phi(-q^2)^2 / phi(-q)^2 = phi(q)^2 / phi(-q^2)^2 = chi(-q^2)^2 / chi(-q)^4 = chi(q)^4 / chi(-q^2)^2 = f(q)^2 / f(-q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4. - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A028939.
Expansion of Jacobian elliptic function 1 / sqrt(k') in powers of q. - see Fine.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 1 + u^2 - 2*u*v^2. - Michael Somos, Jul 07 2005
Unique solution to f(x^2)^2 = (f(x) + 1 / f(x)) / 2 and f(0)=1, f'(0) nonzero.
G.f.: theta_3 / theta_4 = (Sum_{k} x^k^2) / (Sum_{k} (-x)^k^2) = (Product_{k>0} (1 - x^(4*k - 2)) / ((1 - x^(4*k - 1)) * (1 - x^(4*k - 3)))^2)^2.
A097243(n) = a(4*n). 8*A022577(n) = a(4*n + 2). a(n) = 4*A123655(n) if n>0. Convolution square of A080054.
Empirical: sum(exp(-Pi)^(n-1)*a(n),n=1..infinity) = 2^(1/4). - Simon Plouffe, Feb 20 2011
Empirical : sum(exp(-Pi*sqrt(2))^(n-1)*(-1)^(n+1)*a(n),n=1..infinity) = (-2+2*2^(1/2))^(1/4). - Simon Plouffe, Feb 20 2011
Empirical : sum(exp(-2*Pi)^(n-1)*a(n),n=1..infinity) = 1/2*(8+6*2^(1/2))^(1/4). - Simon Plouffe, Feb 20 2011
a(n) ~ exp(Pi*sqrt(n)) / (4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
G.f.: exp(4*Sum_{k>=1} sigma(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019

A029839 McKay-Thompson series of class 16B for the Monster group.

Original entry on oeis.org

1, 2, -1, -2, 3, 2, -4, -4, 5, 8, -8, -10, 11, 12, -15, -18, 22, 26, -29, -34, 38, 42, -51, -56, 66, 78, -85, -98, 109, 120, -139, -156, 176, 202, -222, -250, 279, 306, -346, -384, 429, 482, -530, -590, 650, 714, -797, -876, 972, 1080, -1180, -1304, 1431, 1562, -1728, -1892, 2078, 2290, -2496
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In [Klein and Fricke 1890], the g.f. A(q)/2 is denoted by mu. On page 613 special values given are mu(i infinity) = infinity, mu(0) = 1, mu(2) = -1 and on page 615 properties given are mu(omega+1) = -i mu(omega), mu(-1/omega) = (mu(omega)+1)/(mu(omega)-1). - Michael Somos, Nov 09 2014

Examples

			G.f. = 1 + 2*x - x^2 - 2*x^3 + 3*x^4 + 2*x^5 - 4*x^6 - 4*x^7 + 5*x^8 + 8*x^9 + ...
T16B = 1/q + 2*q^3 - q^7 - 2*q^11 + 3*q^15 + 2*q^19 - 4*q^23 - 4*q^27 + ...
		

Crossrefs

Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^b: this sequence (b=1), A029839 (b=2), A029840 (b=3), A029841 (b=4), A029842 (b=5), A029843 (b=6), A029844 (b=7).

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{A, m}, If[n < 0, 0, A = 1; m = 1; While[m <= n, m *= 2; A = A /. x -> x^2; A = Sqrt[A + 4*x/A]]; SeriesCoefficient[A, {x, 0, n}]]]; Table[a[n], {n, 0, 58}] (* Jean-François Alcover, Mar 12 2014, after PARI *)
    a[ n_] := SeriesCoefficient[ 2 q^(1/4) EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q], {q, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    QP = QPochhammer; s = QP[q^2]^6/(QP[q]^2*QP[q^4]^4) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A)^2))^2, n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A + 4*x/A)); polcoeff(A, n))};

Formula

Expansion of q times normalized Hauptmodul for Gamma(4) in powers of q^4.
Expansion of q^(1/4) * eta(q^2)^6 / (eta(q)^2 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [2, -4, 2, 0, ...].
G.f. A(x) satisfies: A(x)^2 = A(x^2) + 4*x / A(x^2). - Michael Somos, Mar 08 2004
G.f.: Product_{k>0} ((1 + x^(2*k-1)) / (1 + x^(2*k)))^2.
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 4 + v^2 - u^2*v. - Michael Somos, May 14 2004
Given g.f. A(x), then B(q) = A(q^4) / (2*q) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4. - Michael Somos, Oct 04 2006
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = (u6 + u2)^2 - u1*u2*u3*u6. - Michael Somos, Oct 04 2006
Convolution inverse of A079006.
Expansion of q^(1/4) * 2 / k(q)^(1/2) in powers of Jacobi nome q where k() is the elliptic modulus.
Expansion of q^(1/2) * 2 * (1 + k'(q)) / k(q) in powers of q^2. - Michael Somos, Nov 09 2014
Expansion of phi(x) / psi(x^2) = phi(x)^2 / psi(x)^2 = psi(x)^2 / psi(x^2)^2 = phi(-x^2)^2 / psi(-x)^2 = chi(-x^2)^4 / chi(-x)^2 = chi(x)^2 * chi(-x^2)^2 = chi(x)^4 * chi(-x)^2 = f(x)^2 / f(-x^4)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of continued fraction 1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...)) in powers of x^4. - Michael Somos, Apr 27 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007096.
a(n) = (-1)^n * A082304(n). Convolution square is A029841. - Michael Somos, Jul 05 2014
From Peter Bala, Jan 09 2021: (Start)
A(q) = Sum_{n = -oo..oo} q^n/(1 - q^(4*n+1)) / Sum_{n = -oo..oo} q^(2*n)/(1 - q^(4*n+1)).
A(q) = ( 1 + q/(1 + (q + q^2)/(1 + q^3/(1 + (q^2 + q^4)/(1 + q^5/(1 + ... ))))) )^2. See Agarwal, p. 285.
A(q) = B(q)^2, where B(q) is the g.f. of A029838. (End)
abs(a(n)) ~ exp(Pi*sqrt(n)/2) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Feb 07 2023

Extensions

Additional comments from Michael Somos, Jul 11 2002

A053692 Number of self-conjugate 4-core partitions of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 0, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 3, 1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 2, 0
Offset: 0

Views

Author

James Sellers, Feb 14 2000

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of positive odd solutions to equation x^2 + 4*y^2 = 8*n + 5. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^10 + x^12 + x^13 + x^14 + 2*x^15 + ...
G.f. = q^5 + q^13 + q^29 + q^37 + q^45 + q^53 + q^61 + 2*q^85 + q^101 + q^109 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 153 Entry 22.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(64), 1), 701); A[6] + A[14] + A[30] - A[35] + A[36]; /* Michael Somos, Jun 21 2015 */;
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x (1/2)] EllipticTheta[ 2, 0, x^2] / (4 x^(5/8)), {x, 0, n}]; (* Michael Somos, Jun 21 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^8]^2, {x, 0, n}]; (* Michael Somos, Jun 21 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^8]^2 QPochhammer[ x^2, x^4] / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Jun 21 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^2]^2 - 2 EllipticTheta[ 2, Pi/4, q^2]^2) / 16, {q, 0, 8 n + 5}]; (* Michael Somos, Jun 21 2015 *)
    a[ n_] := If[ n < 0, 0, Sum[ (-1)^Quotient[d, 2], {d, Divisors[ 8 n + 5]}] / 2]; (* Michael Somos, Jun 21 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum( k=0, ceil( sqrtint(8*n + 1)/2), x^((k^2 + k)/2), x * O(x^n)); polcoeff( A * subst(A + x * O(x^(n\4)), x, x^4), n))}; /* Michael Somos, Nov 03 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Apr 28 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 8*n + 5, d, (-1)^(d\2)) / 2)}; /* Michael Somos, Jun 21 2015*/
    

Formula

Expansion of psi(x) * psi(x^4) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Nov 03 2005
Expansion of chi(x) * f(-x^8)^2 in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 24 2012
Expansion of f(x, x^7) * f(x^3, x^5) = f(x, x^3) * f(x^4, x^12) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 21 2015
Expansion of (psi(x)^2 - psi(-x)^2) / (4*x) in powers of x^2 where psi() is a Ramanujan theta function. - Michael Somos, Jun 21 2015
Expansion of q^(-5/8) * eta(q^2)^2 * eta(q^8)^2 / (eta(q) * eta(q^4)) in powers of q. - Michael Somos, Apr 28 2003
Euler transform of period 8 sequence [ 1, -1, 1, 0, 1, -1, 1, -2, ...]. - Michael Somos, Apr 28 2003
a(n) = 1/2 * b(8*n + 5), where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jul 24 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246950.
G.f.: Sum_{k in Z} x^k / (1 - x^(8*k + 5)). - Michael Somos, Nov 03 2005
G.f.: Sum_{k>0} -(-1)^k * x^((k^2 + k)/2) / (1 - x^(2*k - 1)). - Michael Somos, Jun 21 2015
G.f.: Product_{i>=1} (1-x^(8*i))^2*(1-x^(4*i-2))/(1-x^(2*i-1)).
a(9*n + 2) = a(9*n + 8) = 0. a(9*n + 5) = a(n). 2 * a(n) = A008441(2*n + 1).

A098151 Number of partitions of 2*n with no part divisible by 3 and all odd parts occurring with even multiplicities.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 198, 268, 360, 480, 634, 832, 1084, 1404, 1808, 2316, 2952, 3744, 4728, 5946, 7448, 9294, 11556, 14320, 17688, 21780, 26740, 32736, 39968, 48672, 59122, 71644, 86616, 104484, 125768, 151072, 181104, 216684
Offset: 0

Views

Author

Noureddine Chair, Aug 29 2004

Keywords

Comments

There are no partitions of 2n+1 in which all odd parts occur with even multiplicity. - Michael Somos, Apr 15 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is also the number of Schur overpartitions of n, i.e., the number of overpartitions of n where adjacent parts differ by at least 3 if the smaller is overlined or divisible by 3 and adjacent parts differ by at least 6 if the smaller is overlined and divisible by 3. - Jeremy Lovejoy, Mar 23 2015
Let A(q) denote the g.f. of this sequence. Let m be a nonzero integer. The simple continued fraction expansions of the real numbers A(1/(2*m)) and A(1/(2*m+1)) may be predictable. For a given positive integer n, the sequence of the n-th partial denominators of the continued fractions are conjecturally polynomial or quasi-polynomial in m for m sufficiently large. An example is given below. Cf. A080054. - Peter Bala, Jun 09 2025

Examples

			a(4)=10 because 8 = 4+4 = 4+2+2=2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 4+2+1+1 = 4+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
G.f. = 1 + 2*q + 4*q^2 + 6*q^3 + 10*q^4 + 16*q^5 + 24*q^6 + 36*q^7 + 52*q^8 + ...
From _Peter Bala_, Jun 09 2025: (Start)
G.f.: A(q) = f(q, q^2) / f(-q, -q^2).
Simple continued fraction expansions of A(1/(2*m)):
m =  2  [1;  1   9  1    5    8    45   4  1  2  1  1  1  3  3   2  2 ...]
m =  3  [1;  2  13  1   14   12   133   8  1  1  7  2  1  2  2   1  1 ...]
m =  4  [1;  3  17  1   27   16   297  12  2  2  1  1  1  2  2   2  2 ...]
m =  5  [1;  4  21  1   44   20   561  16  2  1  7  3  3  2  2  25  8 ...]
m =  6  [1;  5  25  1   65   24   949  20  3  2  1  1  1  3  4   2  1 ...]
m =  7  [1;  6  29  1   90   28  1485  24  3  1  7  4  5  2  1   1  6 ...]
m =  8  [1;  7  33  1  119   32  2193  28  4  2  1  1  1  4  6   2  1 ...]
m =  9  [1;  8  37  1  152   36  3097  32  4  1  7  5  7  2  1   1  3 ...]
m = 10  [1;  9  41  1  189   40  4221  36  5  2  1  1  1  5  8   2  1 ...]
...
The sequence of the 4th partial denominators [5, 14, 27, 44, ...] appears to be given by the polynomial (2*m + 1)*(m - 1) for m >= 2.
The sequence of the 6th partial denominators [45, 133, 297, 561, ...] appears to be given by the polynomial (2*m + 1)*(2*m^2 + 1) for m >= 2. (End)
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k+x^(2*k))/(1-x^k+x^(2*k)),k=1..150),x=0,100);
    # alternative program using expansion of f(q, q^2) / f(-q, -q^2):
    with(gfun): series( add(x^(n*(3*n-1)/2),n = -8..8)/add((-1)^n*x^(n*(3*n-1)/2), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^3]^2 / (QPochhammer[ q]^2 QPochhammer[ q^6]), {q, 0, n}] (* Michael Somos, Oct 23 2013 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1)) * (1+x^(3*k-2)) / ((1-x^(3*k-1)) * (1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Dec 04 2004 */

Formula

Expansion of phi(-q^3) / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Apr 15 2012
Expansion of f(q, q^2) / f(-q, -q^2) in powers of q where f(,) is the Ramanujan two-variable theta function. - Michael Somos, Apr 15 2012
Expansion of eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)) in powers of q.
G.f. = (Sum_{n = -oo..oo} (-1)^n*q^(3*n^2)) / (Sum_{n = -oo..oo} (-1)^n*q^(n^2)). - N. J. A. Sloane, Aug 09 2016
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + u^2) * (u^2 + v^4) - 4 * u^2*v^4. - Michael Somos, Apr 15 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v + 3 * u*v^2 - 3 * u^2*v^3. - Michael Somos, Dec 04 2004
Euler transform of period 6 sequence [2, 1, 0, 1, 2, 0, ...]. - Vladeta Jovovic, Sep 24 2004
Taylor series of product_{k=1..inf}(1+x^k+x^(2*k))/(1-x^k+x^(2*k))= product_{k=1..inf}(1+x^k)(1-x^(3k))/((1-x^k)(1+x^(3k)))=Theta_4(0, x^3)/theta_4(0, x)
a(n) ~ Pi * BesselI(1, Pi*sqrt(2*n/3)) / (3*sqrt(2*n)) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/4) * 3^(3/4) * n^(3/4)) * (1 - 3*sqrt(3)/(8*Pi*sqrt(2*n)) - 45/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 09 2017
Convolution of A000726 and A003105. - R. J. Mathar, Nov 17 2017
From Peter Bala, Jun 09 2025: (Start)
G.f.: A(q) = Sum_{n = -oo..oo} q^(n*(3*n+1)/2) / Sum_{n = -oo..oo} (-1)^n * q^(n*(3*n+1)/2).
Recurrences:
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + + - - ... = f(n), where [0, 1, 2, 5, 7, 12, 15, ...] is the sequence of generalized pentagonal numbers A001318, a(n) is set equal to 0 for negative n and f(n) = 1 if n is a generalized pentagonal number, otherwise f(n) = 0 (see A080995). Compare with the recurrence for the partition function p(n) = A000041(n).
a(n) - 2*a(n-1) + 2*a(n-4) - 2*a(n-9) + 2*a(n-16) - 2*a(n-25) + - ... = g(n), where g(n) = 2*(-1)^k if n is of the form 3*(k^2), otherwise g(n) = 0. (End)

A122135 Expansion of f(x, -x^4) / phi(-x^2) in powers of x where f(, ) and phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 26, 31, 40, 48, 60, 72, 89, 106, 130, 154, 186, 220, 264, 310, 370, 433, 512, 598, 704, 818, 958, 1110, 1293, 1494, 1734, 1996, 2308, 2650, 3052, 3496, 4014, 4584, 5248, 5980, 6825, 7760, 8834, 10020, 11380, 12882, 14594
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of integer partitions y of n such that y_i > y_{i+1} for all even i. For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (331) (71) (81)
(2211) (421) (332) (432)
(3211) (431) (441)
(521) (531)
(3311) (621)
(4211) (3321)
(4311)
(5211)
The even-length case appears to be A122134.
The odd-length case is A351595.
The alternately unequal version appears to be A122129, even A351008, odd A122130.
The alternately equal version is A351003, even A351012, odd A000009.
The alternately equal and unequal version is A351005, even A035457, odd A351593.
The alternately unequal and equal version is A351006, even A351007, odd A053251. (End)
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 4. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 7*x^7 + 10*x^8 + ...
G.f. = q^9 + q^49 + 2*q^89 + 2*q^129 + 3*q^169 + 4*q^209 + 6*q^249 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.5). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(d), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, -x^5] QPochhammer[ x^4, -x^5] QPochhammer[-x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+1))*(1 - x^(20*k+2))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+8))*(1 - x^(20*k+9))*(1 - x^(20*k+11))*(1 - x^(20*k+12))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+18))*(1 - x^(20*k+19)) ), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1) - 1) \2, x^(k^2 + k) / prod(i=1, 2*k+1, 1 - x^i, 1 + x * O(x^(n-k^2-k)))), n))};

Formula

Expansion of f(x^2, x^8) / f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^3, -x^7) * f(-x^4, -x^16) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, ...].
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1))).
Let f(n) = 1/Product_{k >= 0} (1-q^(20k+n)). Then g.f. is f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19); - N. J. A. Sloane, Mar 19 2012.
a(n) ~ (3 + sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016

A045828 One fourth of theta series of cubic lattice with respect to face.

Original entry on oeis.org

1, 2, 2, 4, 3, 2, 6, 4, 4, 6, 4, 4, 7, 8, 2, 8, 8, 4, 10, 4, 4, 10, 10, 8, 9, 4, 6, 12, 8, 6, 10, 12, 4, 14, 8, 4, 16, 10, 8, 8, 9, 10, 12, 12, 8, 12, 12, 4, 20, 10, 6, 20, 8, 6, 10, 12, 8, 20, 18, 8, 11, 12, 12, 16, 8, 6, 20, 16, 12, 14, 8, 12, 20, 14, 6, 12, 20, 8, 26, 12, 8, 22, 8, 12, 15
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of solutions to n = t1 + t2 + 2*t3 where t1, t2, t3 are triangular numbers. - Michael Somos, Jan 02 2006
The cubic lattice is the set of triples [a, b, c] where the entries are all integers. A face is centered at a triple where one entry is an integer and the other two are one half an odd integer. - Michael Somos, Jun 29 2012

Examples

			G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 2*x^5 + 6*x^6 + 4*x^7 + 4*x^8 + 6*x^9 + ...
G.f. = q + 2*q^3 + 2*q^5 + 4*q^7 + 3*q^9 + 2*q^11 + 6*q^13 + 4*q^15 + 4*q^17 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/4 EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x]^2, {x, 0, n + 1/2}]; (* Michael Somos, Jun 29 2012 *)
    a[ n_] := SeriesCoefficient[ 1/8 EllipticTheta[ 2, 0, x^2] EllipticTheta[ 2, 0, x]^2, {x, 0, 2 n + 1}]; (* Michael Somos, Jun 29 2012 *)
    QP = QPochhammer; s = (QP[q^2]^3*QP[q^4]^2)/QP[q]^2 + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^2 / eta(x + A)^2, n))}; /* Michael Somos, Oct 25 2006 */

Formula

Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^4)^2) / eta(q)^2 in powers of q. - Michael Somos, Jan 02 2006
Expansion of phi(x) * psi(x^2)^2 = psi(x)^2 * psi(x^2) = psi(x)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 29 2012
Euler transform of period 4 sequence [2, -1, 2, -3, ...]. - Michael Somos, Mar 05 2003
Convolution of A033761 and A010054. - Michael Somos, Jun 29 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = (1/2)^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A212885. - Michael Somos, Sep 08 2018

Extensions

Edited by Michael Somos, Mar 05 2003

A050470 a(n) = Sum_{d|n, n/d == 1 (mod 4)} d^2 - Sum_{d|n, n/d == 3 (mod 4)} d^2.

Original entry on oeis.org

1, 4, 8, 16, 26, 32, 48, 64, 73, 104, 120, 128, 170, 192, 208, 256, 290, 292, 360, 416, 384, 480, 528, 512, 651, 680, 656, 768, 842, 832, 960, 1024, 960, 1160, 1248, 1168, 1370, 1440, 1360, 1664, 1682, 1536, 1848, 1920, 1898, 2112, 2208, 2048, 2353, 2604
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Number 7 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Multiplicative because it is the Dirichlet convolution of A000290 = n^2 and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005

Examples

			G.f. = q + 4*q^2 + 8*q^3 + 16*q^4 + 26*q^5 + 32*q^6 + 48*q^7 + 64*q^8 + ...
		

Crossrefs

Programs

  • Haskell
    a050470 n = a050461 n - a050465 n  -- Reinhard Zumkeller, Mar 06 2012
    
  • Magma
    Basis( ModularForms( Gamma1(4), 3), 51) [2]; /* Michael Somos, May 17 2015 */
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^2]^3 (QPochhammer[ q^4] / QPochhammer[ q])^2)^2, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q]^2 / 4)^2, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[n/d, 2] (-1)^Quotient[n/d, 2], {d, Divisors@n}]]; (* Michael Somos, May 17 2015 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(2*e+2) - s[p]^(e+1))/(p^2 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * (n/d%2) * (-1)^(n/d\2)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * (eta(x^4 + A) / eta(x + A))^4, n))}; /* Michael Somos, May 17 2015 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A050470(n): return prod((p**(e+1<<1)-(m:=(0,1,0,-1)[p&3]))//(p**2-m) for p, e in factorint(n).items()) # Chai Wah Wu, Jun 21 2024

Formula

G.f.: Sum_{n>=1} n^2*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
From Michael Somos, Aug 08 2005: (Start)
Euler transform of period 4 sequence [ 4, -2, 4, -6, ...].
Expansion of eta(q^2)^6 * eta(q^4)^4 / eta(q)^4 in powers of q.
G.f.: x Product_{k>0} (1 + x^k)^4 * (1 - x^(2*k))^2 * (1 - x^(4*k))^4.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w * (u - 8*v) * (v - 4*w) - v^2 * (v - 8*w)^2. (End)
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 + x^k) / (1 - x^k)^3. - Michael Somos, Sep 02 2005
Expansion of q * phi(q)^2 * psi(q^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Aug 15 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A120030.
a(n) = A050461(n) - A050465(n). - Reinhard Zumkeller, Mar 06 2012
Multiplicative with a(p^e) = ((p^2)^(e+1) - Chi(p)^(e+1))/(p^2 - Chi(p)), Chi = A101455. - Jianing Song, Oct 30 2019
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Pi^3/32 (A153071). - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^2*sin(d*Pi/2). - Ridouane Oudra, Sep 26 2024

A092673 a(n) = moebius(n) - moebius(n/2) where moebius(n) is zero if n is not an integer.

Original entry on oeis.org

1, -2, -1, 1, -1, 2, -1, 0, 0, 2, -1, -1, -1, 2, 1, 0, -1, 0, -1, -1, 1, 2, -1, 0, 0, 2, 0, -1, -1, -2, -1, 0, 1, 2, 1, 0, -1, 2, 1, 0, -1, -2, -1, -1, 0, 2, -1, 0, 0, 0, 1, -1, -1, 0, 1, 0, 1, 2, -1, 1, -1, 2, 0, 0, 1, -2, -1, -1, 1, -2, -1, 0, -1, 2, 0, -1, 1, -2, -1, 0, 0, 2, -1, 1, 1, 2, 1, 0, -1, 0, 1, -1, 1, 2, 1, 0, -1, 0, 0, 0, -1, -2, -1, 0, -1, 2
Offset: 1

Views

Author

Jon Perry, Mar 02 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Setting x=1 gives us phi(n) (A000010). Setting x=0 gives A092674.
Apparently the Dirichlet inverse of A001511. - R. J. Mathar, Dec 22 2010
Given A = A115359 as an infinite lower triangular matrix and B = the Mobius sequence as a vector, A092673 = A*B. - Gary W. Adamson, Mar 14 2011
Empirical: Letting M(n) denote the n X n matrix whereby the (i,j)-entry of M(n) is Sum_{k=1..j} floor(i/k), we have that a(n) is the (n,1)-entry of the inverse of M(n). - John M. Campbell, Aug 30 2017
John Campbell's statement is proved at the Mathematics Stack Exchange link. - Sungjin Kim, Jul 17 2019

Examples

			The first few s[n] are:
x, -2*x + 3, -x + 3, x + 1, -x + 5, 2*x, -x + 7, 4, 6, 2*x + 2, -x + 11, -x + 5, -x + 13, 2*x + 4, x + 7, 8, -x + 17, 6, -x + 19, -x + 9, x + 11, 2*x + 8, -x + 23, 8, 20, 2*x + 10, 18, -x + 13, -x + 29, -2*x + 10, -x + 31, 16, x + 19.
x - 2*x^2 - x^3 + x^4 - x^5 + 2*x^6 - x^7 + 2*x^10 - x^11 +...
		

Crossrefs

Cf. A008683 (moebius(n)), A092149 (partial sums), A092674, A115359.

Programs

  • Maple
    A092673:= proc(n) if n::odd then numtheory:-mobius(n) else numtheory:-mobius(n) - numtheory:-mobius(n/2) fi end proc:
    map(A092673, [$1..100]); # Robert Israel, Dec 31 2015
  • Mathematica
    f[n_] := MoebiusMu[n] - If[OddQ@n, 0, MoebiusMu[n/2]]; Array[f, 105] (* Robert G. Wilson v *)
  • PARI
    s=vector(2000); t(n)=binomial(n+1,2); s[1]=x; for(i=2,2000, s[i]=t(i)-sum(j=1,i-1, s[j]*floor(i/j))); for(i=1,2000,print1(","polcoeff(s[i],1)))
    
  • PARI
    {a(n) = if( n<1, 0, moebius(n) - if( n%2, 0, moebius(n/2)))} /* Michael Somos, Mar 26 2007 */
    
  • PARI
    {a(n) = local(A, B, m); if( n<1, 0, A = x * O(x^n); B = 1 + x + A; for( k=1, n, B *= eta(x^k + A)^( m = polcoeff(B, k))); m)} /* Michael Somos, Mar 26 2007 */
    
  • PARI
    a(n)=my(o=valuation(n%8,2)); if(o==0, moebius(n), if(o==1, 2*moebius(n), if(o==2, moebius(n/4), 0))) \\ Charles R Greathouse IV, Feb 07 2013
    
  • Python
    from sympy import mobius
    def A092673(n): return mobius(n)-(0 if n&1 else mobius(n>>1)) # Chai Wah Wu, Jul 13 2022

Formula

Let t(n) = binomial(n+1,2); s[1]=x; for i >= 2, s[i] = t(i)-Sum_{j=1..i-1} s[j]*floor(i/j); a(n) = coefficient of x in s[n]. - Jon Perry
a(n) is multiplicative with a(2)= -2, a(4)= 1, a(2^e)= 0 if e>2. a(p)= -1, a(p^e)= 0 if e>1, p>2. - Michael Somos, Mar 26 2007
a(8*n)= 0. a(2*n + 1) = moebius(2*n + 1). a(2*n) = moebius(2*n) - moebius(n). - Michael Somos, Mar 26 2007
|a(n)| <= 2.
1 / (1 + x) = Product_{k>0} f(-x^k)^a(k) where f() is a Ramanujan theta function. - Michael Somos, Mar 26 2007
Dirichlet g.f.: (1-2^(-s))/zeta(s). - Ralf Stephan, Mar 24 2015
G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} A(x^k). - Seiichi Manyama, Mar 31 2023
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 9/Pi^2 = 0.9118906... . - Amiram Eldar, Jan 19 2024

A122134 Expansion of Sum_{k>=0} x^(k^2+k)/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 18, 24, 28, 36, 42, 54, 62, 78, 91, 112, 130, 159, 184, 222, 258, 308, 356, 424, 488, 576, 664, 778, 894, 1044, 1196, 1389, 1590, 1838, 2098, 2419, 2754, 3162, 3596, 4114, 4668, 5328, 6032, 6864, 7760, 8806, 9936, 11252
Offset: 0

Views

Author

Michael Somos, Aug 21 2006, Oct 10 2007

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
In Watson 1937 page 275 he writes "Psi_0(q^{1/2},q) = prod_1^oo (1+q^{2n}) G(-q^2)" so this is the expansion in powers of q^2. - Michael Somos, Jun 29 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of even-length integer partitions y of n such that y_i != y_{i+1} for all even i. For example, the a(2) = 1 through a(9) = 7 partitions are:
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(2211) (3211) (71) (81)
(3311) (3321)
(4211) (4311)
(5211)
This appears to be the even-length version of A122135.
The odd-length version is A351595.
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 3. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = q + q^81 + q^121 + 2*q^161 + 2*q^201 + 4*q^241 + 4*q^281 + ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(c), p. 591.
  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.6). MR0858826 (88b:11063)

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / QPochhammer[ x, x, 2 k], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient [ 1 / (QPochhammer[ x^4, -x^5] QPochhammer[ -x, -x^5] QPochhammer[ x, x^2]), {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, -x^5] QPochhammer[ -x^3, -x^5] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+2))*(1 - x^(20*k+3))*(1 - x^(20*k+4))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+7))*(1 - x^(20*k+13))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+16))*(1 - x^(20*k+17)) *(1 - x^(20*k+18))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k) / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n -k^2-k)))), n))};

Formula

Euler transform of period 20 sequence [ 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, ...].
Expansion of f(x^4, x^6) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 29 2015
Expansion of f(-x^2, x^3) / phi(-x^2) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Jun 29 2015
Expansion of G(-x) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 29 2015
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k))).
Expansion of f(-x, -x^9) * f(-x^8, -x^12) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is the Ramanujan general theta function.
a(n) = number of partitions of n into parts that are each either == 2, 3, ..., 7 (mod 20) or == 13, 14, ..., 18 (mod 20). - Michael Somos, Jun 29 2015 [corrected by Vaclav Kotesovec, Nov 12 2016]
a(n) ~ (3 - sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016

A123884 Expansion of phi(x) * phi(-x^6) / chi(-x^2) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 0, 2, 2, 1, 4, 0, 2, 3, 2, 2, 0, 4, 2, 2, 0, 0, 2, 1, 4, 2, 2, 2, 2, 3, 2, 0, 2, 2, 2, 2, 0, 2, 4, 4, 0, 0, 0, 1, 2, 4, 0, 2, 4, 2, 2, 1, 6, 0, 2, 2, 0, 0, 2, 4, 2, 0, 2, 2, 0, 4, 0, 4, 2, 1, 2, 0, 2, 4, 0, 0, 2, 2, 4, 3, 4, 0, 2, 2, 2, 2
Offset: 0

Views

Author

Michael Somos, Oct 17 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + ...
G.f. = q + 2*q^13 + q^25 + 2*q^37 + 3*q^49 + 2*q^61 + 2*q^73 + 2*q^97 + 2*q^109 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^2 EllipticTheta[ 4, 0, x^6] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Oct 01 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^6] QPochhammer[ -x^2, x^2], {x, 0, n}]; (* Michael Somos, Oct 01 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^4 + A) * eta(x^12 + A)), n))};

Formula

Expansion of q^(-1/12) * eta(q^2)^4 * eta(q^6)^2 / (eta(q)^2 * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -2, ...].
a(n) = A093829(12*n + 1).
a(n) = (-1)^n * A248886(n). a(2*n) = A131961(n). a(2*n + 1) = 2 * A131963(n). - Michael Somos, Oct 01 2015
Previous Showing 61-70 of 1364 results. Next