A056477
Number of primitive (aperiodic) palindromic structures using a maximum of three different symbols.
Original entry on oeis.org
1, 1, 0, 1, 1, 4, 3, 13, 12, 39, 36, 121, 116, 364, 351, 1088, 1080, 3280, 3237, 9841, 9800, 29510, 29403, 88573, 88440, 265716, 265356, 797121, 796796, 2391484, 2390352, 7174453, 7173360, 21523238, 21520080, 64570064, 64566684, 193710244, 193700403, 581130368, 581120880
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
a(0)=1 prepended and terms a(32) and beyond from
Andrew Howroyd, Oct 02 2019
A107767
a(n) = (1 + 3^n - 2*3^(n/2))/4 if n is even, (1 + 3^n - 4*3^((n-1)/2))/4 if n odd.
Original entry on oeis.org
0, 1, 4, 16, 52, 169, 520, 1600, 4840, 14641, 44044, 132496, 397852, 1194649, 3585040, 10758400, 32278480, 96845281, 290545684, 871666576, 2615029252, 7845176329, 23535617560, 70607118400, 211821620920, 635465659921
Offset: 1
- Balaban, A. T., Brunvoll, J., Cyvin, B. N., & Cyvin, S. J. (1988). Enumeration of branched catacondensed benzenoid hydrocarbons and their numbers of Kekulé structures. Tetrahedron, 44(1), 221-228. See Eq. 5.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 60).
- Index entries for linear recurrences with constant coefficients, signature (4,0,-12,9).
-
a:=[];; for n in [1..30] do if n mod 2 <> 0 then Add(a,(1+3^n-4*3^((n-1)/2))/4); else Add(a,(1+3^n-2*3^(n/2))/4); fi; od; a; # Muniru A Asiru, Oct 30 2018
-
I:=[0, 1, 4, 16]; [n le 4 select I[n] else 4*Self(n-1)-12*Self(n-3)+9*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
-
a:=proc(n) if n mod 2 = 0 then (1+3^n-2*3^(n/2))/4 else (1+3^n-4*3^((n-1)/2))/4 fi end: seq(a(n),n=1..32);
-
CoefficientList[Series[-x/((x-1)*(3*x-1)*(3*x^2-1)),{x,0,40}],x] (* or *) LinearRecurrence[{4,0,-12,9},{0,1,4,16},50] (* Vincenzo Librandi, Jun 26 2012 *)
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k=3; Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,k}]/2,{n,2,40}] (* Robert A. Russell, Oct 28 2018 *)
CoefficientList[Series[(1/12 E^(-Sqrt[3] x) (-3 + 2 Sqrt[3] - (3 + 2 Sqrt[3]) E^(2 Sqrt[3] x) + 3 E^((3 + Sqrt[3]) x) + 3 E^(x + Sqrt[3] x)))/x, {x, 0, 20}], x]*Table[(k+1)!, {k, 0, 20}] (* Stefano Spezia, Oct 29 2018 *)
-
x='x+O('x^50); concat(0, Vec(x^2/((1-x)*(3*x-1)*(3*x^2-1)))) \\ Altug Alkan, Sep 23 2018
A147746
Riordan array (1, x(1-2x)/(1-3x+x^2)).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 13, 14, 9, 4, 1, 0, 34, 40, 28, 14, 5, 1, 0, 89, 114, 87, 48, 20, 6, 1, 0, 233, 323, 267, 161, 75, 27, 7, 1, 0, 610, 910, 809, 528, 270, 110, 35, 8, 1
Offset: 0
Triangle begins
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 5, 3, 1;
0, 13, 14, 9, 4, 1;
0, 34, 40, 28, 14, 5, 1;
0, 89, 114, 87, 48, 20, 6, 1;
...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, # (1-2#)/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
A216238
Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=5, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 0, 4, 5, 0, 0, 0, 0, 4, 9, 5, 0, 0, 0, 0, 0, 13, 14, 0, 0, 0, 0, 0, 0, 13, 27, 14, 0, 0, 0, 0, 0, 0, 0, 40, 41, 0, 0, 0, 0, 0, 0, 0, 0, 40, 81, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 122, 0, 0, 0, 0, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 4, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 13, 13, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 27, 40, 40, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 41, 81, 121, 121, 0, 0, ... row n=4
0, 0, 0, 0, 0, 41, 122, 243, 364, 364, 0, ... row n=5
0, 0, 0, 0, 0, 0, 122, 365, 729, 1093, 1093, ... row n=6
...
- E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome1, p.89
Similar sequences:
A216201,
A216210,
A216216,
A216218,
A216219,
A216220,
A216226,
A216228,
A216229,
A216230,
A216232,
A216235,
A216236.
A262600
Number of Dyck paths of semilength n and height exactly 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 7, 33, 132, 484, 1684, 5661, 18579, 59917, 190696, 600744, 1877256, 5828185, 17998783, 55342617, 169552428, 517884748, 1577812060, 4796682165, 14555626635, 44100374341, 133436026192, 403279293648, 1217616622992, 3673214880049, 11072960931319
Offset: 0
a(4) = 1 because the only favorable path is UUUUDDDD.
-
[((3^(n-1)+1)/2)-Fibonacci(2*n-1): n in [1.. 35]]; // Vincenzo Librandi, Sep 26 2015
-
CoefficientList[ Series[x^4/((x-1) (3 x-1) (x^2-3 x+1)), {x, 0, 30}], x]
-
a(n) = if( n<1, n==0, (3^(n-1) + 1) / 2) - fibonacci(2*n-1); vector(30, n, a(n-1)) \\ Altug Alkan, Sep 25 2015
-
concat(vector(4), Vec(x^4/((1-x)*(1-3*x)*(1-3*x+x^2)) + O(x^100))) \\ Colin Barker, Feb 08 2016
A092807
Expansion of (1-6*x+4*x^2)/((1-2*x)*(1-6*x)).
Original entry on oeis.org
1, 2, 8, 40, 224, 1312, 7808, 46720, 280064, 1679872, 10078208, 60467200, 362799104, 2176786432, 13060702208, 78364180480, 470185017344, 2821109972992, 16926659575808, 101559956930560, 609359740534784
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Lily Yen, Crossings and Nestings for Arc-Coloured Permutations, arXiv:1211.3472 [math.CO], 2012-2013 and Arc-coloured permutations, PSAC 2013, Paris, France, June 24-28, Proc. DMTCS (2013) 743-754.
- Lily Yen, Crossings and Nestings for Arc-Coloured Permutations and Automation, Electronic Journal of Combinatorics, 22(1) (2015), #P1.14.
- Index entries for linear recurrences with constant coefficients, signature (8,-12).
-
[1] cat [6^(n-1) + 2^(n-1): n in [1..40]]; // G. C. Greubel, Jan 04 2023
-
CoefficientList[Series[(1-6x+4x^2)/((1-2x)(1-6x)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-12},{1,2,8},41] (* Harvey P. Dale, Aug 23 2011 *)
-
[(6^n + 3*2^n + 2*0^n)/6 for n in range(41)] # G. C. Greubel, Jan 04 2023
A123183
a(1)=-1; a(2)=-1; a(3)=-2; a(n) = 4*a(n-1) - 3*a(n-2) for n >= 4.
Original entry on oeis.org
-1, -1, -2, -5, -14, -41, -122, -365, -1094, -3281, -9842, -29525, -88574, -265721, -797162, -2391485, -7174454, -21523361, -64570082, -193710245, -581130734, -1743392201, -5230176602, -15690529805, -47071589414, -141214768241, -423644304722, -1270932914165, -3812798742494
Offset: 1
-
a[1]:=-1: a[2]:=-1: a[3]:=-2: for n from 4 to 29 do a[n]:=4*a[n-1]-3*a[n-2] od: seq(a[n],n=1..29);
-
M = {{1, -1, 0}, {-1, 2, -1}, {0, -1, 1}} v[1] = {1, 0, 0} v[n_] := v[n] = M.v[n - 1] a1 = Table[ -v[n][[1]], {n, 1, 50}]
A135293
Differences between successive numbers whose sum of digits in base 3 is 2.
Original entry on oeis.org
2, 2, 2, 4, 2, 6, 10, 2, 6, 18, 28, 2, 6, 18, 54, 82, 2, 6, 18, 54, 162, 244, 2, 6, 18, 54, 162, 486, 730, 2, 6, 18, 54, 162, 486, 1458, 2188, 2, 6, 18, 54, 162, 486, 1458, 4374, 6562, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122
Offset: 0
Adam Shelly (adam.shelly(AT)gmail.com), Dec 04 2007, Dec 05 2007
triangle begins:
2
2 2
4 2 6
10 2 6 18
28 2 6 18 54
82 2 6 18 54 162
244 2 6 18 54 162 486.
-
T[0, 0] := 2; T[n_, 0] := 3^(n - 1) + 1; T[n_, m_] := 2*3^(m - 1); Table[T[n, m], {n, 0, 5}, {m, 0, n}] (* G. C. Greubel, Oct 09 2016 *)
Join[{2},Differences[Select[Range[50000],Total[IntegerDigits[#,3]]==2&]]] (* Harvey P. Dale, Jul 04 2019 *)
A198792
Triangle T(n,k), read by rows, given by (0,1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 8, 16, 12, 4, 1, 0, 16, 40, 40, 20, 5, 1, 0, 32, 96, 120, 80, 30, 6, 1, 0, 64, 224, 336, 280, 140, 42, 7, 1, 0, 128, 512, 896, 896, 560, 224, 56, 8, 1, 0, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1
Offset: 0
Triangle begins :
1
0, 1
0, 1, 1
0, 2, 2, 1
0, 4, 6, 3, 1
0, 8, 16, 12, 4, 1
0, 16, 40, 40, 20, 5, 1
Columns include
A000007,
A011782,
A057711,
A080929,
A082138,
A080951,
A082139,
A082140,
A082141,
A000012,
A001477,
A002378.
A208736
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level between 0 and 1.
Original entry on oeis.org
0, 0, 0, 1, 5, 22, 91, 361, 1392, 5265, 19653, 72694, 267179, 977593, 3565600, 12975457, 47142021, 171075606, 620303547, 2247803785, 8141857808, 29481675889, 106728951109, 386314552438, 1398132674955, 5059626441177, 18308871648576, 66249898660801
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
Cf.
A208737,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0, 0}, LinearRecurrence[{8, -21, 20, -5}, {0, 1, 5, 22}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:5,5:22}):
if n in d:
return d[n]
d[n]=8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4)
return d[n]
Comments