cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A003602 Kimberling's paraphrases: if n = (2k-1)*2^m then a(n) = k.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 31, 16, 32, 1, 33, 17, 34, 9, 35, 18, 36, 5, 37, 19, 38, 10, 39, 20, 40, 3, 41, 21, 42
Offset: 1

Views

Author

Keywords

Comments

Fractal sequence obtained from powers of 2.
k occurs at (2*k-1)*A000079(m), m >= 0. - Robert G. Wilson v, May 23 2006
Sequence is T^(oo)(1) where T is acting on a word w = w(1)w(2)..w(m) as follows: T(w) = "1"w(1)"2"w(2)"3"(...)"m"w(m)"m+1". For instance T(ab) = 1a2b3. Thus T(1) = 112, T(T(1)) = 1121324, T(T(T(1))) = 112132415362748. - Benoit Cloitre, Mar 02 2009
Note that iterating the post-numbering operator U(w) = w(1) 1 w(2) 2 w(3) 3... produces the same limit sequence except with an additional "1" prepended, i.e., 1,1,1,2,1,3,2,4,... - Glen Whitney, Aug 30 2023
In the binary expansion of n, first swallow all zeros from the right, then add 1, and swallow the now-appearing 0 bit as well. - Ralf Stephan, Aug 22 2013
Although A264646 and this sequence initially agree in their digit-streams, they differ after 48 digits. - N. J. A. Sloane, Nov 20 2015
"[This is a] fractal because we get the same sequence after we delete from it the first appearance of all positive integers" - see Cobeli and Zaharescu link. - Robert G. Wilson v, Jun 03 2018
From Peter Munn, Jun 16 2022: (Start)
The sequence is the list of positive integers interleaved with the sequence itself. Provided the offset is suitable (which is the case here) a term of such a self-interleaved sequence is determined by the odd part of its index. Putting some of the formulas given here into words, a(n) is the position of the odd part of n in the list of odd numbers.
Applying the interleaving transform again, we get A110963.
(End)
Omitting all 1's leaves A131987 + 1. - David James Sycamore, Jul 26 2022
a(n) is also the smallest positive number not among the terms between a(a(n-1)) and a(n-1) inclusive (with a(0)=1 prepended). - Neal Gersh Tolunsky, Mar 07 2023

Examples

			From _Peter Munn_, Jun 14 2022: (Start)
Start of table showing the interleaving with the positive integers:
   n  a(n)  (n+1)/2  a(n/2)
   1    1      1
   2    1               1
   3    2      2
   4    1               1
   5    3      3
   6    2               2
   7    4      4
   8    1               1
   9    5      5
  10    3               3
  11    6      6
  12    2               2
(End)
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) is the index of the column in A135764 where n appears (see also A054582).
Cf. A000079, A000265, A001511, A003603, A003961, A014577 (with offset 1, reduction mod 2), A025480, A035528, A048673, A101279, A110963, A117303, A126760, A181988, A220466, A249745, A253887, A337821 (2-adic valuation).
Cf. also A349134 (Dirichlet inverse), A349135 (sum with it), A349136 (Möbius transform), A349431, A349371 (inverse Möbius transform).
Cf. A264646.

Programs

  • Haskell
    a003602 = (`div` 2) . (+ 1) . a000265
    -- Reinhard Zumkeller, Feb 16 2012, Oct 14 2010
    
  • Haskell
    import Data.List (transpose)
    a003602 = flip div 2 . (+ 1) . a000265
    a003602_list = concat $ transpose [[1..], a003602_list]
    -- Reinhard Zumkeller, Aug 09 2013, May 23 2013
    
  • Maple
    A003602:=proc(n) options remember: if n mod 2 = 1 then RETURN((n+1)/2) else RETURN(procname(n/2)) fi: end proc:
    seq(A003602(n), n=1..83); # Pab Ter
    nmax := 83: for m from 0 to ceil(simplify(log[2](nmax))) do for k from 1 to ceil(nmax/(m+2)) do a((2*k-1)*2^m) := k od: od: seq(a(k), k=1..nmax); # Johannes W. Meijer, Feb 04 2013
    A003602 := proc(n)
        a := 1;
        for p in ifactors(n)[2] do
            if op(1,p) > 2 then
                a := a*op(1,p)^op(2,p) ;
            end if;
        end do  :
        (a+1)/2 ;
    end proc: # R. J. Mathar, May 19 2016
  • Mathematica
    a[n_] := Block[{m = n}, While[ EvenQ@m, m /= 2]; (m + 1)/2]; Array[a, 84] (* or *)
    a[1] = 1; a[n_] := a[n] = If[OddQ@n, (n + 1)/2, a[n/2]]; Array[a, 84] (* Robert G. Wilson v, May 23 2006 *)
    a[n_] := Ceiling[NestWhile[Floor[#/2] &, n, EvenQ]/2]; Array[a, 84] (* Birkas Gyorgy, Apr 05 2011 *)
    a003602 = {1}; max = 7; Do[b = {}; Do[AppendTo[b, {k, a003602[[k]]}], {k, Length[a003602]}]; a003602 = Flatten[b], {n, 2, max}]; a003602 (* L. Edson Jeffery, Nov 21 2015 *)
  • PARI
    A003602(n)=(n/2^valuation(n,2)+1)/2; /* Joerg Arndt, Apr 06 2011 */
    
  • Python
    import math
    def a(n): return (n/2**int(math.log(n - (n & n - 1), 2)) + 1)/2 # Indranil Ghosh, Apr 24 2017
    
  • Python
    def A003602(n): return (n>>(n&-n).bit_length())+1 # Chai Wah Wu, Jul 08 2022
  • Scheme
    (define (A003602 n) (let loop ((n n)) (if (even? n) (loop (/ n 2)) (/ (+ 1 n) 2)))) ;; Antti Karttunen, Feb 04 2015
    

Formula

a(n) = (A000265(n) + 1)/2.
a((2*k-1)*2^m) = k, for m >= 0 and k >= 1. - Robert G. Wilson v, May 23 2006
Inverse Weigh transform of A035528. - Christian G. Bower
G.f.: 1/x * Sum_{k>=0} x^2^k/(1-2*x^2^(k+1) + x^2^(k+2)). - Ralf Stephan, Jul 24 2003
a(2*n-1) = n and a(2*n) = a(n). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005
a(A118413(n,k)) = A002024(n,k); = a(A118416(n,k)) = A002260(n,k); a(A014480(n)) = A001511(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A001511. - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A249745(A126760(A003961(n))) = A249745(A253887(A048673(n))). That is, this sequence plays the same role for the numbers in array A135764 as A126760 does for the odd numbers in array A135765. - Antti Karttunen, Feb 04 2015 & Jan 19 2016
G.f. satisfies g(x) = g(x^2) + x/(1-x^2)^2. - Robert Israel, Apr 24 2015
a(n) = A181988(n)/A001511(n). - L. Edson Jeffery, Nov 21 2015
a(n) = A025480(n-1) + 1. - R. J. Mathar, May 19 2016
a(n) = A110963(2n-1) = A349135(4*n). - Antti Karttunen, Apr 18 2022
a(n) = (1 + n)/2, for n odd; a(n) = a(n/2), for n even. - David James Sycamore, Jul 28 2022
a(n) = n/2^A001511(n) + 1/2. - Alan Michael Gómez Calderón, Oct 06 2023
a(n) = A123390(A118319(n)). - Flávio V. Fernandes, Mar 02 2025

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005

A065331 Largest 3-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 3, 16, 1, 18, 1, 4, 3, 2, 1, 24, 1, 2, 27, 4, 1, 6, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 12, 1, 2, 9, 64, 1, 6, 1, 4, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 81, 2, 1, 12, 1, 2, 3, 8, 1, 18, 1, 4, 3, 2, 1, 96
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) < n^0.715. - Charles R Greathouse IV, May 21 2014

Crossrefs

Related to A053165 via A225546.
Cf. A126760 (ordinal transform of this sequence, from its term a(1) = 1 onward).

Programs

  • Haskell
    a065331 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 3 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Magma
    [Gcd(n,6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
  • Maple
    A065331 := proc(n) n/A065330(n) ; end: # R. J. Mathar, Jun 24 2009
    seq(2^padic:-ordp(n,2)*3^padic:-ordp(n,3), n=1..100); # Robert Israel, Feb 08 2016
  • Mathematica
    Table[GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
    a[n_] := Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n)=3^valuation(n,3)<Charles R Greathouse IV, Aug 21 2011
    
  • PARI
    a(n)=gcd(n,6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
    
  • PARI
    a(n)=gcd(6^logint(n,2),n) \\ 'optimized' version of Sykora's script; Charles R Greathouse IV, Jul 23 2024
    

Formula

a(n) = n / A065330(n).
a(n) = A006519(n) * A038500(n).
a(n) = (2^A007814 (n)) * (3^A007949(n)).
Multiplicative with a(2^e)=2^e, a(3^e)=3^e, a(p^e)=1, p>3. - Vladeta Jovovic, Nov 05 2001
Dirichlet g.f.: zeta(s)*(1-2^(-s))*(1-3^(-s))/ ( (1-2^(1-s))*(1-3^(1-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = gcd(n,6^n). - Stanislav Sykora, Feb 08 2016
a(A225546(n)) = A225546(A053165(n)). - Peter Munn, Jan 17 2020
Sum_{k=1..n} a(k) ~ n*(log(n)^2 + (2*gamma + 3*log(2) + 2*log(3) - 2)*log(n) + (2 + log(2)^2/6 + 3*log(2)*(log(3) - 1) - 2*log(3) + log(3)^2/6 + gamma*(3*log(2) + 2*log(3) - 2) - 2*sg1)) / (6*log(2)*log(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Sep 19 2020
a(n) = A003586(A322026(n)), A322026(n) = A071521(a(n)). - Antti Karttunen, Sep 08 2024

A273669 Decimal representation ends with either 2 or 9.

Original entry on oeis.org

2, 9, 12, 19, 22, 29, 32, 39, 42, 49, 52, 59, 62, 69, 72, 79, 82, 89, 92, 99, 102, 109, 112, 119, 122, 129, 132, 139, 142, 149, 152, 159, 162, 169, 172, 179, 182, 189, 192, 199, 202, 209, 212, 219, 222, 229, 232, 239, 242, 249, 252, 259, 262, 269, 272, 279, 282, 289, 292, 299, 302, 309, 312, 319, 322, 329, 332, 339
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Comments

Natural numbers not in A273664.

Crossrefs

Sequences A017293 and A017377 interleaved.
Cf. also A273664, A249824, A275716.

Programs

  • Mathematica
    Select[Range@ 340, MemberQ[{2, 9}, Mod[#, 10]] &] (* or *)
    Table[{10 n + 2, 10 n + 9}, {n, 0, 33}] // Flatten (* or *)
    CoefficientList[Series[(-5/(1 - x) + (11 - x)/(-1 + x)^2 - 2/(1 + x))/2, {x, 0, 67}], x] (* Michael De Vlieger, Aug 07 2016 *)
  • Scheme
    (define (A273669 n) (+ (* 10 (/ (+ (- n 2) (if (odd? n) 1 0)) 2)) (if (odd? n) 2 9)))

Formula

a(n) = 10*(((n-2)+A000035(n))/2) + 2 [when n is odd], or + 9 [when n is even].
For n >= 5, a(n) = 2*a(n-2) - a(n-4).
a(n) = A126760(A084967(n)).
a(n) = A249746((3*A249745(n))-1).
Other identities. For all n >= 1:
A084967(n) = 5*A007310(n) = A007310(a(n)).
G.f.: x*(x^2+7*x+2)/((x+1)*(x-1)^2).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((1+1/sqrt(5))/2)*phi^2*Pi/10 - log(phi)/(2*sqrt(5)) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A322026 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j) and A007949(i) = A007949(j), for all i, j, where A007814 and A007949 give the 2- and 3-adic valuations of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 1, 6, 7, 2, 1, 8, 1, 2, 3, 9, 1, 10, 1, 4, 3, 2, 1, 11, 1, 2, 12, 4, 1, 5, 1, 13, 3, 2, 1, 14, 1, 2, 3, 6, 1, 5, 1, 4, 7, 2, 1, 15, 1, 2, 3, 4, 1, 16, 1, 6, 3, 2, 1, 8, 1, 2, 7, 17, 1, 5, 1, 4, 3, 2, 1, 18, 1, 2, 3, 4, 1, 5, 1, 9, 19, 2, 1, 8, 1, 2, 3, 6, 1, 10, 1, 4, 3, 2, 1, 20, 1, 2, 7, 4, 1, 5, 1, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(n), A007949(n)].
For all i, j:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A122841(i) = A122841(j),
a(i) = a(j) => A244417(i) = A244417(j),
a(i) = a(j) => A322316(i) = A322316(j) => A072078(i) = A072078(j).
If and only if a(k) > a(i) for all k > i then k is in A003586, - David A. Corneth, Dec 03 2018
That is, A003586 gives the positions of records (1, 2, 3, 4, 5, ...) in this sequence.
Sequence A126760 (without its initial zero) and this sequence are ordinal transforms of each other.

Crossrefs

Cf. A003586 (positions of records, the first occurrence of n), A007814, A007949, A065331, A071521, A072078, A087465, A122841, A126760 (ordinal transform), A322316, A323883, A323884.
Cf. also A247714 and A255975.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
    A322026(n) = v322026[n];
    
  • PARI
    A065331(n) = (3^valuation(n, 3)<A065331
    A071521(n) = { my(t=1/3); sum(k=0, logint(n, 3), t*=3; logint(n\t, 2)+1); }; \\ From A071521.
    A322026(n) = A071521(A065331(n)); \\ Antti Karttunen, Sep 08 2024

Formula

For s = A003586(n), a(s) = n = a((6k+1)*s) = a((6k-1)*s), where s is the n-th 3-smooth number and k > 0. - David A. Corneth, Dec 03 2018
A065331(n) = A003586(a(n)). - David A. Corneth, Dec 04 2018
From Antti Karttunen, Sep 08 2024: (Start)
a(n) = Sum{k=1..n} [A126760(k)==A126760(n)], where [ ] is the Iverson bracket.
a(n) = A071521(A065331(n)). [Found by Sequence Machine and also by LODA miner]
a(n) = A323884(25*n). [Conjectured by Sequence Machine]
(End)

A253887 Row index of n in A191450: a(3n) = 2n, a(3n+1) = 2n+1, a(3n+2) = a(n+1).

Original entry on oeis.org

1, 1, 2, 3, 1, 4, 5, 2, 6, 7, 3, 8, 9, 1, 10, 11, 4, 12, 13, 5, 14, 15, 2, 16, 17, 6, 18, 19, 7, 20, 21, 3, 22, 23, 8, 24, 25, 9, 26, 27, 1, 28, 29, 10, 30, 31, 11, 32, 33, 4, 34, 35, 12, 36, 37, 13, 38, 39, 5, 40, 41, 14, 42, 43, 15, 44, 45, 2, 46, 47, 16, 48, 49, 17, 50, 51, 6, 52, 53, 18, 54, 55, 19, 56, 57, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2015

Keywords

Comments

a(n) gives the row index of n in square array A191450, or equally, the column index of n in A254051.

Crossrefs

Odd bisection of A126760.
Cf. A254046 (the corresponding column index).

Programs

  • Python
    def a(n):
        if n%3==0: return 2*n//3
        elif n%3==1: return 2*(n - 1)//3 + 1
        else: return a((n - 2)//3 + 1)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017

Formula

a(3n) = 2n, a(3n+1) = 2n+1, a(3n+2) = a(n+1).
a(n) = A126760(2n-1).
a(n) = A249746(A003602(A064216(n))). - Antti Karttunen, Feb 04 2015

A135765 Distribute the odd numbers in columns based on the occurrence of "3" in each prime factorization; square array A(row, col) = 3^(row-1) * A007310(col), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 5, 3, 7, 15, 9, 11, 21, 45, 27, 13, 33, 63, 135, 81, 17, 39, 99, 189, 405, 243, 19, 51, 117, 297, 567, 1215, 729, 23, 57, 153, 351, 891, 1701, 3645, 2187, 25, 69, 171, 459, 1053, 2673, 5103, 10935, 6561, 29, 75, 207, 513, 1377, 3159, 8019, 15309, 32805
Offset: 1

Views

Author

Alford Arnold, Nov 28 2007

Keywords

Comments

The Table can be constructed by multiplying sequence A000244 by A007310.
From Antti Karttunen, Jan 26 2015: (Start)
A permutation of odd numbers. Adding one to each term and then dividing by two gives a related table A254051, which for any odd number, located in this array as x = A(row,col), gives the result at A254051(row+1,col) after one combined Collatz step (3x+1)/2 -> x (A165355) has been applied.
Each odd number n occurs here in position A(A007949(n), A126760(n)).
Compare also to A135764.
(End)

Examples

			The top left corner of the array:
    1,    5,    7,   11,   13,   17,   19,   23,   25,   29,   31,   35, ...
    3,   15,   21,   33,   39,   51,   57,   69,   75,   87,   93,  105, ...
    9,   45,   63,   99,  117,  153,  171,  207,  225,  261,  279,  315, ...
   27,  135,  189,  297,  351,  459,  513,  621,  675,  783,  837,  945, ...
   81,  405,  567,  891, 1053, 1377, 1539, 1863, 2025, 2349, 2511, 2835, ...
  243, 1215, 1701, 2673, 3159, 4131, 4617, 5589, 6075, 7047, 7533, 8505, ...
etc.
For n = 6, we have [A002260(6), A004736(6)] = [3, 1] (that is 6 corresponds to location 3,1 (row,col) in above table) and A(3,1) = A000244(3-1) * A007310(1) = 3^2 * 1 = 9.
For n = 9, we have [A002260(9), A004736(9)] = [3, 2] (9 corresponds to location 3,2) and A(3,2) = A000244(3-1) * A007310(2) = 3^2 * 5 = 9*5 = 45.
For n = 13, we have [A002260(13), A004736(13)] = [3, 3] (13 corresponds to location 3,3) and A(3,3) = A000244(3-1) * A007310(3) = 3^2 * 7 = 9*7 = 63.
For n = 23, we have [A002260(23), A004736(23)] = [2, 6] (23 corresponds to location 2,6) and A(2,6) = A000244(2-1) * A007310(6) = 3^1 * 17 = 51.
		

Crossrefs

Row 1: A007310.
Column 1: A000244.
Cf. A007949 (row index), A126760 (column index).
Related arrays: A135764, A254051, A254055, A254101, A254102.

Programs

  • Maple
    N:= 20:
    B:= [seq(op([6*n+1,6*n+5]),n=0..floor((N-1)/2))]:
    [seq(seq(3^j*B[i-j],j=0..i-1),i=1..N)]; # Robert Israel, Jan 26 2015

Formula

From Antti Karttunen, Jan 26 2015: (Start)
With both row and col starting from 1:
A(row, col) = A000244(row-1) * A007310(col) = 3^(row-1) * A007310(col).
a(n) = (2*A254051(n))-1.
a(n) = A003961(A254053(n)).
Above in array form:
A(row,col) = A003961(A254053(row,col)) = A003961(A135764(row,A249745(col))).
(End)

Extensions

Name amended and examples edited by Antti Karttunen, Jan 26 2015

A277911 Self-inverse permutation of natural numbers induced when A118306 is restricted to A007310.

Original entry on oeis.org

1, 3, 2, 5, 4, 7, 6, 10, 17, 8, 13, 26, 11, 15, 14, 18, 9, 16, 31, 21, 20, 40, 24, 23, 27, 12, 25, 30, 45, 28, 19, 54, 34, 33, 36, 35, 38, 37, 68, 22, 57, 115, 44, 43, 29, 47, 46, 74, 73, 51, 50, 87, 55, 32, 53, 58, 41, 56, 180, 61, 60, 96, 83, 65, 64, 67, 66, 39, 101, 100, 75, 110, 49, 48, 71, 77, 76, 80, 124, 78, 84, 283, 63, 81, 126, 88, 52
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2016

Keywords

Crossrefs

Cf. A277908, A277909, A277910 (for "almost fixed points"), also A277907.

Programs

Formula

a(n) = A126760(A118306(A007310(n))).

A118306 If n = product{k>=1} p(k)^b(n,k), where p(k) is the k-th prime and where each b(n,k) is a nonnegative integer, then: If n occurs earlier in the sequence, then a(n) = product{k>=2} p(k-1)^b(n,k); If n does not occur earlier in the sequence, then a(n) = product{k>=1} p(k+1)^b(n,k).

Original entry on oeis.org

1, 3, 2, 9, 7, 15, 5, 27, 4, 21, 13, 45, 11, 33, 6, 81, 19, 75, 17, 63, 10, 39, 29, 135, 49, 51, 8, 99, 23, 105, 37, 243, 14, 57, 77, 225, 31, 69, 22, 189, 43, 165, 41, 117, 12, 87, 53, 405, 25, 147, 26, 153, 47, 375, 91, 297, 34, 93, 61, 315, 59, 111, 20, 729, 119, 195, 71
Offset: 1

Views

Author

Leroy Quet, May 14 2006

Keywords

Comments

Sequence is a permutation of the positive integers and it is its own inverse permutation.
From Antti Karttunen, Nov 05 2016: (Start)
A016945 gives the positions of even terms.
A007310 is closed with respect to this permutation. See A277911 for the permutation induced.
A029744 (without 3) seems to give the positions of records in this sequence (note that it gives the record positions in related A003961 and A048673) which implies that A083658 (without its term 5) would then give the record values.
(End)

Crossrefs

Programs

  • Maple
    A064989 := proc(n) local a,ifs,p ; a := 1 ; ifs := ifactors(n)[2] ; for p in ifs do if op(1,p) > 2 then a := a* prevprime(op(1,p))^op(2,p) ; fi ; od; RETURN(a) ; end: A003961 := proc(n) local a,ifs,p ; a := 1 ; ifs := ifactors(n)[2] ; for p in ifs do a := a* nextprime(op(1,p))^op(2,p) ; od; RETURN(a) ; end: A118306 := proc(nmin) local a,anxt,i,n ; a := [1] ; while nops(a) < nmin do n := nops(a)+1 ; if n in a then anxt := A064989(n) ; else anxt := A003961(n) ; fi ; a := [op(a),anxt] ; od; a ; end: A118306(100) ; # R. J. Mathar, Sep 06 2007
  • PARI
    A118306(n) = { if(1==n, 1, my(f = factor(n)); my(d = (-1)^primepi(f[1, 1])); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-d)); factorback(f)); }; \\ Antti Karttunen, Nov 06 2016
    for(n=1, 10001, write("b118306.txt", n, " ", A118306(n)));
    
  • Scheme
    (define (A118306 n) (cond ((= 1 n) n) ((odd? (A055396 n)) (A003961 n)) (else (A064989 n)))) ;; Antti Karttunen, Nov 05 2016

Formula

From Antti Karttunen, Nov 05 2016: (Start)
a(1) = 1; and for n > 1, if n = a(k) for some k = 1 .. n-1, then a(n) = A064989(n), otherwise a(n) = A003961(n). [After the original definition and R. J. Mathar's Maple-code]
a(1) = 1, and for n > 1, if A055396(n) is odd, a(n) = A003961(n), otherwise a(n) = A064989(n). [The above reduces to this.]
a(n) = product{k>=1} prime(k-((-1)^A055396(n)))^e(k) when n = product{k>=1} prime(k)^e(k).
a(2n) = A249734(n) and a(A249734(n)) = 2n.
A126760(a(A007310(n))) = A277911(n).
For n > 1, A055396(a(n)) = A055396(n) - (-1)^A055396(n). [Permutation sends the terms on any odd row of A246278 to the next even row just below, and vice versa.]
A246277(a(n)) = A246277(n). [While keeping them in the same column.]
a(n) = A064989(A064989(a(A003961(A003961(n))))).
(End)

Extensions

More terms from R. J. Mathar, Sep 06 2007
A small omission in the definition corrected by Antti Karttunen, Nov 05 2016

A353336 Sum of A353420 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 1, 4, 6, 0, 2, 0, 8, 12, 1, 0, 14, 0, 3, 16, 10, 0, 2, 9, 12, 28, 4, 0, 12, 0, 1, 20, 14, 24, 9, 0, 16, 24, 3, 0, 22, 0, 5, 66, 20, 0, 2, 16, 25, 28, 6, 0, 56, 30, 4, 32, 22, 0, 12, 0, 26, 100, 1, 36, 24, 0, 7, 40, 28, 0, 9, 0, 28, 86, 8, 40, 34, 0, 3, 157, 30, 0, 19, 42, 32, 44, 5, 0, 52, 48
Offset: 1

Views

Author

Antti Karttunen, Apr 20 2022

Keywords

Comments

The first negative term is a(255255) = -11936.

Crossrefs

Cf. A003961, A126760, A353420 (also a quadrisection of this sequence), A353335.
Cf. also A323882, A323894, A349135.

Programs

  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A353420(n) = A126760(A003961(n));
    v353335 = DirInverseCorrect(vector(up_to,n,A353420(n)));
    A353335(n) = v353335[n];
    A353336(n) = (A353420(n)+A353335(n));

Formula

a(n) = A353420(n) + A353335(n).
For n > 1, a(n) = -Sum_{d|n, 1A353420(d) * A353335(n/d).

A126759 a(0) = 1; a(2n) = a(n); a(3n) = a(n); otherwise write n = 6i+j, where j = 1 or 5 and set a(n) = 2i+2 if j = 1, otherwise a(n) = 2i+3.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 4, 2, 2, 3, 5, 2, 6, 4, 3, 2, 7, 2, 8, 3, 4, 5, 9, 2, 10, 6, 2, 4, 11, 3, 12, 2, 5, 7, 13, 2, 14, 8, 6, 3, 15, 4, 16, 5, 3, 9, 17, 2, 18, 10, 7, 6, 19, 2, 20, 4, 8, 11, 21, 3, 22, 12, 4, 2, 23, 5, 24, 7, 9, 13, 25, 2, 26, 14, 10, 8, 27, 6, 28, 3, 2, 15, 29, 4, 30, 16, 11, 5, 31, 3
Offset: 0

Views

Author

N. J. A. Sloane, based on email from Miles Okazaki (milesokazaki(AT)gmail.com), Feb 18 2007

Keywords

Comments

Invented by Miles Okazaki, who said: I was trying to write a composition that has the same melody going at several different speeds. If this sequence is mapped onto musical notes and you play every other term, you get the original sequence at half speed. If you play every third term, you again get the same melody. And every 4th term, 6th term, 8th term, 12th term, etc. yields the same result. The pattern generates itself, adding two new increasing integers every six terms.
The formula in the definition encapsulates this verbal description. - N. J. A. Sloane

Crossrefs

One more than A126760.
Cf. A007310.

Programs

  • Haskell
    a126759 n = a126759_list !! n
    a126759_list = 1 : f 1 where
       f n = (case mod n 6 of 1 -> 2 * div n 6 + 2
                              5 -> 2 * div n 6 + 3
                              3 -> a126759 $ div n 3
                              _ -> a126759 $ div n 2) : f (n + 1)
    -- Reinhard Zumkeller, May 23 2013
    
  • Maple
    a:=proc(n) option remember; local i,j;
    if n = 0 then RETURN(1); fi;
    if n mod 2 = 0 then RETURN(a(n/2)); fi;
    if n mod 3 = 0 then RETURN(a(n/3)); fi;
    j := n mod 6; i := (n-j)/6;
    if j = 1 then RETURN(2*i+2) else RETURN(2*i+3); fi;
    end;
    [seq(a(n),n=0..100)];
  • Mathematica
    a[n_] := a[n] = Module[{i, j}, If[n == 0, Return[1]]; If[Mod[n, 2] == 0, Return[a[n/2]]]; If[Mod[n, 3] == 0, Return[a[n/3]]]; j = Mod[n, 6]; i = (n-j)/6; If[j == 1, Return[2*i+2], Return[2*i+3]]]; Table[a[n], {n, 0, 90}] (* Jean-François Alcover, Feb 11 2014, after Maple *)
  • PARI
    a(n) = if (n, if (!(n%2), a(n/2), if (!(n%3), a(n/3), my(k=n%6); if (k==1, 2*(n\6)+2, 2*(n\6)+3))), 1); \\ Michel Marcus, Aug 06 2022
  • Scheme
    (definec (A126759 n) (cond ((zero? n) 1) ((even? n) (A126759 (/ n 2))) ((zero? (modulo n 3)) (A126759 (/ n 3))) ((= 1 (modulo n 6)) (+ 2 (/ (- n 1) 3))) (else (+ 1 (/ (+ n 1) 3)))))
    ;; Antti Karttunen, Jan 28 2015
    

Formula

For k > 1: a(A007310(k-1)) = k and a(m) < k for m < A007310(k-1). - Reinhard Zumkeller, Jun 16 2008
For n > 0: a(A007310(n)) = n and a(m) < n for m < A007310(n). - Reinhard Zumkeller, May 23 2013
a(0) = 1, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 2, a(6n-1) = 2n + 1. [Essentially same as the original description, except the last clause expressed slightly differently.] - Antti Karttunen, Jan 28 2015

Extensions

Typo in definition corrected by Reinhard Zumkeller, Jun 16 2008
Previous Showing 21-30 of 35 results. Next