cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A134332 Integer part of the arithmetic mean of the prime factors (counted with multiplicity) of the period numbers defined by A133900.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 3, 11, 2, 13, 3, 3, 2, 17, 2, 19, 2, 4, 4, 23, 2, 5, 5, 3, 3, 29, 3, 31, 2, 5, 5, 5, 2, 37, 6, 6, 2, 41, 3, 43, 4, 3, 7, 47, 2, 7, 3, 7, 4, 53, 2, 7, 3, 8, 8, 59, 2, 61, 9, 4, 2, 8, 3, 67, 5, 9, 3, 71, 2, 73, 9, 4, 5, 8, 4, 79, 2, 3, 9, 83, 3, 9, 11, 10, 3, 89, 2, 9, 6, 11, 12
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Examples

			a(6)=2, since floor(A134331(6)/A133911(6))=floor(12/5)=2.
a(7)=7, since floor(A134331(7)/A133911(7))=floor(14/2)=7.
		

Crossrefs

Formula

a(n)=floor(A134331(n)/A133911(n)) for n>1, defining a(1):=1.
a(n)=n, if n is a prime or 1.

A078177 Composite numbers with an integer arithmetic mean of all prime factors.

Original entry on oeis.org

4, 8, 9, 15, 16, 20, 21, 25, 27, 32, 33, 35, 39, 42, 44, 49, 50, 51, 55, 57, 60, 64, 65, 68, 69, 77, 78, 81, 85, 87, 91, 92, 93, 95, 105, 110, 111, 112, 114, 115, 116, 119, 121, 123, 125, 128, 129, 133, 140, 141, 143, 145, 155, 156, 159, 161, 164, 169, 170, 177, 180
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 20 2002

Keywords

Comments

That is, composite numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is an integer.

Examples

			60 = 2*2*3*5: (2+2+3+5)/4 = 3, therefore 60 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], CompositeQ[#] && IntegerQ[Mean[Flatten[Table[#[[1]], #[[2]]]& /@ FactorInteger[#]]]]&] (* Jean-François Alcover, Aug 03 2018 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, my(f = factor(n)); if (! (sum(k=1, #f~, f[k,1]*f[k,2]) % vecsum(f[,2])), print1(n, ", ")););} \\ Michel Marcus, Feb 22 2016

Formula

A001414(a(n)) == 0 modulo A001222(a(n)).

Extensions

Edited by N. J. A. Sloane, May 30 2008 at the suggestion of R. J. Mathar

A133873 n modulo 3 repeated 3 times.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 3^2=9.

Crossrefs

Formula

G.f.: (1 + 2*x^3)*(1 - x^3)/((1 - x)*(1 - x^9)).
a(n) = (1 + floor(n/3)) mod 3.
a(n) = A010872(A002264(n+3)).
a(n) = 1+floor(n/3)-3*floor((n+3)/9).
a(n) = (((n+3) mod 9)-(n mod 3))/3.
a(n) = ((n+3-(n mod 3))/3) mod 3.
a(n) = binomial(n+3,n) mod 3 = binomial(n+3,3) mod 3.

A133874 n modulo 4 repeated 4 times.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 4^2 = 16.

Crossrefs

Programs

Formula

a(n) = (1 + floor(n/4)) mod 4.
a(n) = A010873(A002265(n+4)).
a(n) = 1 + floor(n/4) - 4*floor((n+4)/16).
a(n) = (((n+4) mod 16) - (n mod 4))/4.
a(n) = ((n + 4 - (n mod 4))/4) mod 4.
G.f. g(x) = (1 + x + x^2 + x^3 + 2x^4 + 2x^5 + 2x^6 + 2x^7 + 3x^8 + 3x^9 + 3x^10 + 3x^11)/(1-x^16).
G.f. g(x) = ((1-x^4)*(1+2x^4+3x^8))/((1-x)*(1-x^16)).
G.f. g(x) = (3x^16-4x^12+1)/((1-x)*(1-x^4)*(1-x^16)).
G.f. g(x) = (1+2x^4+3x^8)/((1-x)*(1+x^4)*(1+x^8)).

A133884 a(n) = binomial(n+4,n) mod 4.

Original entry on oeis.org

1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 4^2=16.

Examples

			For n=2, binomial(6,2) = 6*5/2 = 15, which is 3 (mod 4) so a(2) = 3. - _Michael B. Porter_, Jul 19 2016
		

Crossrefs

Programs

  • Magma
    [Binomial(n+4,n) mod 4: n in [0..100]]; // Vincenzo Librandi, Jul 15 2016
  • Mathematica
    Table[Mod[Binomial[n + 4, 4], 4], {n, 0, 100}] (* Vincenzo Librandi, Jul 15 2016 *)

Formula

a(n) = binomial(n+4,4) mod 4.
G.f.: (1 + x + 3*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + x^10 + x^11)/(1 - x^16) = (1 + 2*x^2 + 2*x^6 + x^8)/((1 - x)*(1 + x^4)*(1 + x^8)).
a(n) = A000505(n+5) mod 4. - John M. Campbell, Jul 14 2016
a(n) = A000506(n+6) mod 4. - John M. Campbell, Jul 15 2016

Extensions

G.f. corrected by Bruno Berselli, Jul 19 2016

A133906 Least number m such that binomial(n+m, m) mod m = 1.

Original entry on oeis.org

2, 3, 5, 2, 2, 7, 9, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 25, 2, 2, 4, 3, 2, 2, 31, 37, 2, 2, 8, 8, 2, 2, 3, 41, 2, 2, 4, 4, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 4, 4, 2, 2, 67, 3, 2, 2, 44, 44, 2, 2, 16, 16, 2, 2, 3, 4, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 89, 9, 2, 2, 3, 3, 2, 2, 97, 97, 2, 2, 7
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Examples

			a(1)=2, since binomial(1+2, 2) mod 2 = 3 mod 2 = 1 and 2 is the minimal number with this property.
a(7)=9 because of binomial(7+9, 9) = 11440 = 1271*9 + 1, but binomial(7+k, k) mod k <> 1 for all numbers < 9.
		

Crossrefs

Programs

  • Mathematica
    Table[Block[{m = 1}, While[Mod[Binomial[n + m, m], m] != 1, m++]; m], {n, 98}] (* Michael De Vlieger, Jul 30 2018 *)
  • PARI
    a(n) = {my(m = 1, ok = 0); until (ok, if (binomial(n+m, m) % m == 1, ok = 1, m++);); return (m);} \\ Michel Marcus, Jul 15 2013

A133907 Least prime number p such that binomial(n+p, p) mod p = 1.

Original entry on oeis.org

2, 3, 5, 2, 2, 7, 11, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 29, 2, 2, 5, 3, 2, 2, 31, 37, 2, 2, 37, 37, 2, 2, 3, 41, 2, 2, 43, 47, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 59, 61, 2, 2, 67, 3, 2, 2, 67, 71, 2, 2, 71, 73, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 89, 89, 2, 2, 3, 3, 2, 2, 97
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Comments

Also the least prime number p such that p divides floor(n/p) or p > n.
a(n) = 2 if and only if n is in A042948. - Robert Israel, May 11 2017
Conjecture: a(n) is the smallest prime p such that Sum_{k=1..n} k^(p-1) == n (mod p). Thus a(n) >= A317358(n). - Thomas Ordowski, Jul 29 2018

Examples

			a(2)=3, since binomial(2+3,3) mod 3 = 10 mod 3 = 1 and 3 is the minimal prime number with this property.
a(7)=11 because of binomial(7+11, 11) = 31824 = 2893*11 + 1, but binomial(7+k, k) mod k <> 1 for all primes < 11.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m;
      m:= 2:
      while floor(n/m) mod m <> 0 do m:= nextprime(m) od:
      m
    end proc:
    map(f, [$1..100]); # Robert Israel, May 11 2017
  • Mathematica
    a[n_] := Module[{p}, For[p = 2, True, p = NextPrime[p], If[Mod[Binomial[n+p, p], p] == 1, Return[p]]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 05 2023 *)
  • PARI
    a(n) = my(p=2); while (binomial(n+p, p) % p != 1, p = nextprime(p+1)); p; \\ Michel Marcus, Dec 17 2022
    
  • Python
    from sympy import nextprime, ff
    def A133907(n):
        p, m = 2, (n+2)*(n+1)>>1
        while m%p != 1:
            q = nextprime(p)
            m = m*ff(n+q,q-p)//ff(q,q-p)
            p = q
        return p # Chai Wah Wu, Feb 22 2023

A133624 Binomial(n+p, n) mod n, where p=4.

Original entry on oeis.org

0, 1, 2, 2, 1, 0, 1, 7, 4, 1, 1, 8, 1, 8, 6, 13, 1, 7, 1, 6, 8, 12, 1, 3, 1, 1, 10, 8, 1, 26, 1, 25, 12, 1, 1, 22, 1, 20, 14, 31, 1, 15, 1, 12, 16, 24, 1, 5, 1, 1, 18, 14, 1, 46, 1, 43, 20, 1, 1, 36, 1, 32, 22, 49, 1, 23, 1, 18, 24, 36, 1, 7, 1, 1, 26, 20, 1, 66, 1, 61, 28, 1, 1, 50, 1, 44, 30
Offset: 1

Views

Author

Hieronymus Fischer, Sep 30 2007

Keywords

Comments

Let d(m)...d(2)d(1)d(0) be the base-n representation of n+p. The relation a(n)=d(1) holds, if n is a prime index. For this reason there are infinitely many terms which are equal to 1.

Crossrefs

Programs

  • Magma
    [Binomial(n+4,4) mod n: n in [1..100]]; // Vincenzo Librandi, Apr 27 2014
  • Mathematica
    Table[Mod[Binomial[n+4,n],n],{n,90}] (* Harvey P. Dale, Apr 26 2014 *)

Formula

a(n) = binomial(n+4,4) mod n.
a(n)=1 if n is a prime > 4, since binomial(n+4,n) == (1+floor(4/n))(mod n), provided n is a prime.
From Chai Wah Wu, May 26 2016: (Start)
a(n) = (n^4 + 10*n^3 + 11*n^2 + 2*n + 24)/24 mod n.
For n > 6:
if n mod 24 == 0, then a(n) = n/12 + 1.
if n mod 24 is in {1, 2, 5, 7, 10, 11, 13, 17, 19, 23}, then a(n) = 1.
if n mod 24 is in {3, 9, 15, 18, 21}, then a(n) = n/3 + 1.
if n mod 24 is in {4, 20}, then a(n) = n/4 + 1.
if n mod 24 == 6, then a(n) = 5*n/6 + 1.
if n mod 24 is in {8, 16}, then a(n) = 3*n/4 + 1.
if n mod 24 == 12, then a(n) = 7*n/12 + 1.
if n mod 24 is in {14, 22}, then a(n) = n/2 + 1.
(End)
For n > 54, a(n) = 2*a(n-24) - a(n-48). - Ray Chandler, Apr 23 2023

A133876 n modulo 6 repeated 6 times.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 0, 0, 0
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 6^2=36.

Crossrefs

Programs

  • Mathematica
    Table[PadRight[{},6,Mod[n,6]],{n,20}]//Flatten (* Harvey P. Dale, Nov 15 2023 *)

Formula

a(n)=(1+floor(n/6)) mod 6.
a(n)=1+floor(n/6)-6*floor((n+6)/36).
a(n)=(((n+6) mod 36)-(n mod 6))/6.
a(n)=((n+6-(n mod 6))/6) mod 6.
G.f. g(x)=(1-x^6)(1+2x^5+3x^12+4x^18+5x^24)/((1-x)(1-x^36)).
G.f. g(x)=(5x^36-6x^30+1)/((1-x)(1-x^6)(1-x^36)).

A133877 n modulo 7 repeated 7 times.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 7^2=49.

Crossrefs

Formula

a(n)=(1+floor(n/7)) mod 7.
a(n)=1+floor(n/7)-7*floor((n+7)/49).
a(n)=(((n+7) mod 49)-(n mod 7))/7.
a(n)=((n+7-(n mod 7))/7) mod 7.
a(n)=binomial(n+7,n) mod 7 =binomial(n+7,7) mod 7.
G.f. g(x)=(1-x^7)(1+2x^7+3x^14+4x^21+5x^28+6x^35)/((1-x)(1-x^49)).
G.f. g(x)=(6x^49-7x^42+1)/((1-x)(1-x^7)(1-x^49)).
Previous Showing 31-40 of 58 results. Next