cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A144749 Decimal expansion of the golden ratio powered to itself.

Original entry on oeis.org

2, 1, 7, 8, 4, 5, 7, 5, 6, 7, 9, 3, 7, 5, 9, 9, 1, 4, 7, 3, 7, 2, 5, 4, 5, 7, 0, 2, 8, 7, 1, 2, 4, 5, 8, 5, 1, 8, 0, 7, 0, 4, 3, 3, 0, 1, 6, 9, 3, 2, 5, 4, 6, 1, 1, 3, 4, 7, 7, 8, 1, 9, 2, 4, 0, 4, 7, 4, 4, 0, 4, 4, 9, 5, 3, 2, 8, 2, 6, 2, 0, 2, 1, 0, 7, 0, 1, 6, 7, 6, 1, 1, 9, 7, 6, 7, 0, 5, 8, 7, 6, 5, 4, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Sep 20 2008

Keywords

Comments

See A092134 for the continued fraction of this value, phi^phi, where phi = (sqrt(5)+1)/2 = A001622. - M. F. Hasler, Oct 08 2014

Examples

			Equals 2.178457567937599147372545702871245851807043301693254611347781924...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[GoldenRatio^GoldenRatio,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    (t=(sqrt(5)+1)/2)^t \\ Use \p99 to get 99 digits; digits(%\.1^99) for the sequence of digits. - M. F. Hasler, Oct 08 2014
    
  • SageMath
    numerical_approx(golden_ratio^golden_ratio, digits=120) # G. C. Greubel, Jun 16 2022

Formula

A176343 a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0.

Original entry on oeis.org

0, 1, 2, 5, 16, 81, 649, 8438, 177199, 6024767, 331362186, 29491234555, 4246737775921, 989489901789594, 373037692974676939, 227552992714552932791, 224594803809263744664718, 358677901683394200229554647, 926823697949890613393169207849
Offset: 0

Views

Author

Roger L. Bagula, Apr 15 2010

Keywords

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n=0 then return 0;
        else return 1 + Fibonacci(n)*a(n-1);
        fi; end;
    List([0..20], n-> a(n) ); # G. C. Greubel, Dec 07 2019
  • Magma
    function a(n)
      if n eq 0 then return 0;
      else return 1 + Fibonacci(n)*a(n-1);
      end if; return a; end function;
    [a(n): n in [0..20]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    with(combinat);
    a:= proc(n) option remember;
          if n=0 then 0
        else 1 + fibonacci(n)*a(n-1)
          fi; end:
    seq( a(n), n=0..20); # G. C. Greubel, Dec 07 2019
  • Mathematica
    a[n_]:= a[n]= If[n==0, 0, Fibonacci[n]*a[n-1] +1]; Table[a[n], {n,0,20}]
  • PARI
    a(n) = if(n==0, 0, 1 + fibonacci(n)*a(n-1) ); \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    def a(n):
        if (n==0): return 0
        else: return 1 + fibonacci(n)*a(n-1)
    [a(n) for n in (0..20)] # G. C. Greubel, Dec 07 2019
    

Formula

a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0.
a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * A101689 = 3.317727324507285486862890025085971028467... is product of Fibonacci factorial constant (see A062073) and Sum_{n>=1} 1/(Product_{k=1..n} A000045(k) ). - Vaclav Kotesovec, Feb 20 2014

A197762 Decimal expansion of sqrt(1/phi), where phi = (1 + sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

7, 8, 6, 1, 5, 1, 3, 7, 7, 7, 5, 7, 4, 2, 3, 2, 8, 6, 0, 6, 9, 5, 5, 8, 5, 8, 5, 8, 4, 2, 9, 5, 8, 9, 2, 9, 5, 2, 3, 1, 2, 2, 0, 5, 7, 8, 3, 7, 7, 2, 3, 2, 3, 7, 6, 6, 4, 9, 0, 1, 9, 7, 0, 1, 0, 1, 1, 8, 2, 0, 4, 7, 6, 2, 2, 3, 1, 0, 9, 1, 3, 7, 1, 1, 9, 1, 2, 8, 8, 9, 1, 5, 8, 5, 0, 8, 1, 3, 5
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

The hyperbolas y^2-x^2=1 and xy=1 meet at (1/c,c) and (-1/c,c), where c=sqrt(golden ratio); see the Mathematica program for a graph; see A189339 for hyperbolas meeting at (c,1/c) and (-c,-1/c).
This number is the eccentricity of an ellipse inscribed in a golden rectangle. - Jean-François Alcover, Sep 03 2015
c/sqrt(-1) is the limit of Pi(a;n)/2 := a^n * sqrt(a - f(a;n)) with f(a;0) = 0, and f(a;n) = sqrt(a + f(a;n-1)) for n >= 1, if one takes a = 1. For a=2 this gives Viète's formula for Pi/2 (see A019669). - Wolfdieter Lang, Jul 06 2018

Examples

			0.786151377757423286069558585842958929523122057...
		

Crossrefs

Programs

  • Mathematica
    N[1/Sqrt[GoldenRatio], 110]
    RealDigits[%]
    FindRoot[x*Sqrt[1 + x^2] == 1, {x, 1.2, 1.3}, WorkingPrecision -> 110]
    Plot[{Sqrt[1 + x^2], 1/x}, {x, 0, 3}]
  • PARI
    sqrt(2/(1+sqrt(5))) \\ Michel Marcus, Sep 03 2015
    
  • PARI
    my(c=1/quadgen(5)); a_vector(len) = digits(sqrtint(floor(c*100^len))); \\ Kevin Ryde, Jul 12 2025

Formula

Equals sqrt(1/phi) = sqrt(phi-1), with phi = A001622.
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139339.
Equals tan(arcsin(1/phi)).
Equals sin(arccos(1/phi)).
Equals cos(arcsin(1/phi)).
Equals cot(arccos(1/phi)). (End)

A339856 Primitive triples for integer-sided triangles whose sides a < b < c form a geometric progression.

Original entry on oeis.org

4, 6, 9, 9, 12, 16, 16, 20, 25, 25, 30, 36, 25, 35, 49, 25, 40, 64, 36, 42, 49, 49, 56, 64, 49, 63, 81, 49, 70, 100, 49, 77, 121, 64, 72, 81, 64, 88, 121, 81, 90, 100, 81, 99, 121, 81, 117, 169, 81, 126, 196, 100, 110, 121, 100, 130, 169, 121, 132, 144, 121, 143, 169
Offset: 1

Views

Author

Bernard Schott, Dec 19 2020

Keywords

Comments

These triangles are called "geometric triangles" in Project Euler problem 370 (see link).
The triples are displayed in increasing lexicographic order (a, b, c).
Equivalently: triples of integer-sided triangles such that b^2 = a*c with a < c and gcd(a, c) = 1.
When a < b < c are in geometric progression with b = a*q, c = b*q, q is the constant, then 1 < q < (1+sqrt(5))/2 = phi = A001622 = 1.6180... (this bound is used in Maple code).
For each triple (a, b, c), there exists (r, s), 0 < r < s such that a = r^2, b = r*s, c = s^2, q = s/r.
Angle C < 90 degrees if 1 < q < sqrt(phi) and angle C > 90 degrees if sqrt(phi) < q < phi with sqrt(phi) = A139339 = 1.2720...
For k >= 2, each triple (a, b, c) of the form (k^2, k*(k+1), (k+1)^2) is (A008133(3k+1), A008133(3k+2), A008133(3k+3)).
Three geometrical properties about these triangles:
1) The sinus satisfy sin^2(B) = sin(A) * sin(C) with sin(A) < sin(B) < sin(C) that form a geometric progression.
2) The heights satisfy h_b^2 = h_a * h_c with h_c < h_b < h_a that form a geometric progression.
3) b^2 = 2 * R * h_b, with R = circumradius of the triangle ABC.

Examples

			The smallest such triangle is (4, 6, 9) with 4*9 = 6^2.
There exist four triangles with small side = 49 corresponding to triples (49, 56, 64), (49, 63, 81), (49, 70, 100) and (49, 77, 121).
The table begins:
   4,  6,  9;
   9, 12, 16;
  16, 20, 25;
  25, 30, 36;
  25, 35, 49;
  25, 40, 64;
  36, 42, 49;
  ...
		

Crossrefs

Cf. A339857 (smallest side), A339858 (middle side), A339859 (largest side), A339860 (perimeter).
Cf. A336755 (similar for sides in arithmetic progression).
Cf. A335893 (similar for angles in arithmetic progression).
Cf. A001622 (phi), A139339 (sqrt(phi)), A008133.

Programs

  • Maple
    for a from 1 to 300 do
    for b from a+1 to floor((1+sqrt(5))/2 * a) do
    for c from b+1 to floor((1+sqrt(5))/2 * b) do
    k:=a*c;
    if k=b^2 and igcd(a,b,c)=1 then print(a,b,c); end if;
    end do;
    end do;
    end do;
  • PARI
    lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a,b,c])==1), print([a,b,c])););););} \\ Michel Marcus, Dec 25 2020
    
  • PARI
    upto(n) = my(res=List(), phi = (sqrt(5)+1) / 2); for(i = 2, sqrtint(n), for(j = i+1, (i*phi)\1, if(gcd(i, j)==1, listput(res, [i^2, i*j, j^2])))); concat(Vec(res)) \\ David A. Corneth, Dec 25 2020

Extensions

Data corrected by David A. Corneth, Dec 25 2020

A063827 a(n) = round(sqrt(a(n-2)^2 + a(n-1)^2)) with a(0) = 1 and a(1) = 2.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 33, 42, 53, 68, 86, 110, 140, 178, 226, 288, 366, 466, 593, 754, 959, 1220, 1552, 1974, 2511, 3194, 4063, 5168, 6574, 8362, 10637, 13530, 17211, 21892, 27847, 35422, 45057, 57314, 72904, 92736, 117962, 150050
Offset: 0

Views

Author

Henry Bottomley, Aug 20 2001

Keywords

Comments

a(n)/a(n-1) tends towards 1.27201964951... = sqrt((1+sqrt(5))/2). See A139339.

Examples

			a(7) = 8 since round(sqrt(5^2 + 6^2)) = round(sqrt(61)) = round(7.8102...) = 8.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Round[Sqrt[a^2+b^2]]}; NestList[nxt,{1,2},50][[;;,1]] (* Harvey P. Dale, Dec 18 2024 *)
  • PARI
    { default(realprecision, 50); for (n=0, 500, if (n>1, a=round(sqrt(a2^2 + a1^2)); a2=a1; a1=a, if (n, a=a1=2, a=a2=1)); write("b063827.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 01 2009

Extensions

Missing parenthesis added to definition by Harry J. Smith, Sep 01 2009

A139347 Decimal expansion of negated tangent of the golden ratio. That is, the decimal expansion of -tan((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 5, 3, 8, 0, 0, 7, 8, 2, 4, 9, 3, 2, 7, 4, 6, 4, 8, 5, 8, 6, 2, 8, 1, 1, 7, 0, 3, 2, 5, 8, 2, 5, 5, 9, 7, 8, 8, 1, 2, 4, 3, 6, 7, 4, 6, 4, 8, 2, 6, 0, 8, 6, 3, 7, 0, 7, 5, 6, 8, 9, 4, 5, 9, 9, 4, 5, 9, 8, 7, 2, 7, 5, 9, 3, 2, 8, 2, 0, 2, 6, 8, 0, 0, 3, 5, 4, 7, 7, 5, 6, 0, 6, 9, 6, 3, 4, 2, 5, 8, 1, 4, 5
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-21.15380078249327464858628117032582559788124367464826...
		

Crossrefs

Programs

Formula

Equals tan(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139348.
Equals A139345/A139346. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign added to definition by R. J. Mathar, Feb 05 2009

A139348 Decimal expansion of negated cotangent of the golden ratio. That is, the decimal expansion of -cot((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 7, 2, 8, 2, 8, 6, 6, 4, 7, 9, 4, 4, 8, 1, 1, 8, 9, 3, 5, 6, 5, 0, 9, 6, 0, 6, 2, 1, 6, 3, 3, 4, 2, 0, 0, 5, 6, 1, 0, 5, 7, 2, 2, 5, 5, 6, 5, 3, 3, 0, 9, 7, 7, 2, 9, 9, 2, 5, 3, 2, 4, 7, 9, 8, 7, 7, 2, 2, 1, 4, 5, 2, 5, 6, 8, 8, 1, 6, 8, 7, 9, 8, 8, 7, 5, 0, 5, 2, 9, 9, 3, 8, 8, 0, 7, 0, 2, 1, 5, 3
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.04727282866479448118935650960621633420056105722556...
		

Crossrefs

Programs

Formula

Equals cot(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139347.
Equals A139346/A139345. (End)

Extensions

Added sign in definition. Leading zero dropped by R. J. Mathar, Feb 05 2009

A195692 Decimal expansion of arccos(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

9, 0, 4, 5, 5, 6, 8, 9, 4, 3, 0, 2, 3, 8, 1, 3, 6, 4, 1, 2, 7, 3, 1, 6, 7, 9, 5, 6, 6, 1, 9, 5, 8, 7, 2, 1, 4, 3, 1, 0, 9, 4, 5, 6, 0, 9, 6, 1, 6, 0, 5, 0, 6, 7, 6, 5, 5, 9, 9, 8, 4, 5, 3, 3, 4, 9, 9, 2, 9, 2, 1, 3, 7, 6, 4, 0, 4, 5, 2, 1, 7, 6, 0, 6, 1, 1, 0, 5, 8, 1, 5, 0, 1, 4, 7, 7, 3, 9, 8, 7, 3, 1, 2, 9, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Every cyclic quadrilateral all of whose angles are greater than arccos((sqrt(5)-1)/2) admits a 3 × 1 grid dissection into three cyclic quadrilaterals [Thm. 2.3 in Choi et al. p. 2]. - Michel Marcus, Aug 13 2019
The base angle of the isosceles triangle of smallest perimeter which circumscribes a semicircle (DeTemple, 1992). - Amiram Eldar, Jan 22 2022
Smallest positive root of the equation sin(x) = cot(x). - Wolfe Padawer, Apr 11 2023

Examples

			arccos(1/phi) = 0.904556894302381364127316795661958721...
cos(0.904556894302381364127316795661958721...) = 1/(golden ratio) = 0.618...
sec(0.904556894302381364127316795661958721...) = (golden ratio) = 1.618...
		

Crossrefs

Programs

  • Mathematica
    r = 1/GoldenRatio;
    N[ArcCos[r], 100]
    RealDigits[%]
  • PARI
    acos(2/(sqrt(5)+1)) \\ Charles R Greathouse IV, Nov 21 2024

Formula

From Amiram Eldar, Feb 07 2022: (Start)
Equals Pi/2 - A175288.
Equals arcsin(1/sqrt(phi)).
Equals arctan(sqrt(phi)). (End)

Extensions

Terms replaced with intended terms by Rick L. Shepherd, Jan 30 2013

A238244 A recursive sequence: a(n) = Fibonacci(n)*a(n-1) + 3.

Original entry on oeis.org

1, 4, 11, 36, 183, 1467, 19074, 400557, 13618941, 749041758, 66664716465, 9599719170963, 2236734566834382, 843248931696562017, 514381848334902830373, 507694884306549093578154, 810788730237558902444311941, 2095078078933852203916102055547
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 20 2014

Keywords

Comments

Generally, sequence a(n) = Fibonacci(n)*a(n-1) + p, with a(1)=1 and fixed p, is asymptotic to c(p) * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where constant c(p) = A062073 * (p*A101689 - p + 1).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==Fibonacci[n]*a[n-1]+3,a[1]==1},a,{n,1,20}]
    nxt[{n_,a_}]:={n+1,a*Fibonacci[n+1]+3}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Sep 04 2024 *)

Formula

a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * (3*A101689-2) = 7.4996979520811499717534... is product of Fibonacci factorial constant (see A062073) and -2+3*sum_{n>=1} 1/product(A000045(k), k=1..n).

A317974 a(n) = 2*(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms 0,0,1,1.

Original entry on oeis.org

0, 0, 1, 1, 4, 12, 33, 97, 280, 808, 2337, 6753, 19516, 56404, 163009, 471105, 1361520, 3934864, 11371969, 32865601, 94983348, 274506972, 793339873, 2292794785, 6626299912, 19150362168, 55345573857, 159951677089, 462268926316, 1335981992356, 3861059617665
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2018

Keywords

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,2(b+c+d)-a}; NestList[nxt,{0,0,1,1},30][[;;,1]] (* or *) LinearRecurrence[{2,2,2,-1},{0,0,1,1},40] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    concat(vector(2), Vec(x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40))) \\ Colin Barker, Sep 04 2018
  • Python
    a1,a2,a3,a4,n = 1,1,0,0,3
    print(0,0)
    print(1,0)
    print(2,1)
    print(3,1)
    while n < 2172:
        a1,a2,a3,a4,n = 2*(a1+a2+a3)-a4,a1,a2,a3,n+1
        print(n,a1) # A.H.M. Smeets, Sep 04 2018
    

Formula

Lim {n -> infinity} log(a(n))/n = 1.0612750619050... = log(phi+sqrt(phi)) = log(A001622+A139339), where phi is the golden ratio. - A.H.M. Smeets, Sep 04 2018
G.f.: x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 04 2018
Previous Showing 11-20 of 28 results. Next