cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A300755 Erroneous version of A145393.

Original entry on oeis.org

1, 2, 2, 4, 4, 5, 3, 7, 5, 7, 4, 11, 5, 8, 8, 12, 6, 13, 6, 15, 10, 11, 7, 21, 10, 13, 12, 18, 9, 22
Offset: 1

Views

Author

Andrey Zabolotskiy, Mar 12 2018

Keywords

Comments

Included in accordance of OEIS policy of including published but incorrect sequences to serve as pointers to the correct versions. - N. J. A. Sloane, Apr 10 2022

A053866 Parity of A000203(n), the sum of the divisors of n; a(n) = 1 when n is a square or twice a square, 0 otherwise.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Mar 29 2000

Keywords

Comments

Also parity of A001227, the number of odd divisors of n. - Omar E. Pol, Apr 04 2016
Also parity of A000593, the sum of odd divisors of n. - Omar E. Pol, Apr 05 2016
Characteristic function of A028982. - Antti Karttunen, Sep 25 2017
It appears that this is also the parity of A067742, the number of middle divisors of n. - Omar E. Pol, Mar 18 2018
Also parity of the deficiency of n (A033879) and of the abundance of n (A033880). - Omar E. Pol, Nov 02 2024

Crossrefs

Essentially same as A093709.

Programs

  • Maple
    A053866:= (n -> numtheory[sigma](n) mod 2):
    seq (A053866(n), n=0..104); # Jani Melik, Jan 28 2011
  • Mathematica
    Mod[DivisorSigma[1,Range[110]],2] (* Harvey P. Dale, Sep 04 2017 *)
  • PARI
    {a(n) = if( n<1, 0, issquare(n) || issquare(2*n))} /* Michael Somos, Apr 12 2004 */
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A053866(n): return int(is_square(n) or is_square(n<<1)) # Chai Wah Wu, Jan 09 2023

Formula

a(n) = A000203(n) mod 2. a(n)=1 iff n>0 is a square or twice a square.
Multiplicative with a(2^e)=1, a(p^e)=1 if e even, 0 otherwise.
a(n) = A093709(n) if n>0.
Dirichlet g.f.: zeta(2s)(1+2^-s). - Michael Somos, Apr 12 2004
a(n) = A001157(n) mod 2. - R. J. Mathar, Apr 02 2011
a(n) = floor(sqrt(n)) + floor(sqrt(n/2)) - floor(sqrt(n-1))-floor(sqrt((n-1)/2)). - Enrique Pérez Herrero, Oct 15 2013
a(n) = A000035(A000203(n)). - Omar E. Pol, Oct 26 2013
a(n) = A063524(A286357(n)) = A063524(A292583(n)). - Antti Karttunen, Sep 25 2017
a(n) = A295896(A156552(n)). - Antti Karttunen, Dec 02 2017
a(n) = Sum_{ m: m^2|n } A019590(n/m^2). - Andrey Zabolotskiy, May 07 2018
G.f.: (theta_3(x) + theta_3(x^2))/2 - 1. - Ilya Gutkovskiy, May 23 2019
Sum_{k=1..n} a(k) ~ (1 + 1/sqrt(2)) * sqrt(n). - Vaclav Kotesovec, Oct 16 2020

Extensions

More terms from James Sellers, Apr 08 2000
Alternative description added to the name by Antti Karttunen, Sep 25 2017

A025441 Number of partitions of n into 2 distinct nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A060306 gives records; A052199 gives where records occur.
Column k=2 of A341040.
Cf. A004439 (a(n)=0), A025302 (a(n)=1), A025303 (a(n)=2), A025304 (a(n)=3), A025305 (a(n)=4), A025306 (a(n)=5), A025307 (a(n)=6), A025308 (a(n)=7), A025309 (a(n)=8), A025310 (a(n)=9), A025311 (a(n)=10), A004431 (a(n)>0).

Programs

  • Haskell
    a025441 n = sum $ map (a010052 . (n -)) $
                          takeWhile (< n `div` 2) $ tail a000290_list
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Mathematica
    Table[Count[PowersRepresentations[n, 2, 2], pr_ /; Unequal @@ pr && FreeQ[pr, 0]], {n, 0, 107}] (* Jean-François Alcover, Mar 01 2019 *)
  • PARI
    a(n)=if(n>4,sum(k=1,sqrtint((n-1)\2),issquare(n-k^2)),0) \\ Charles R Greathouse IV, Jun 10 2016
    
  • PARI
    a(n)=if(n<5,return(0)); my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)/2-issquare(n/2) \\ Charles R Greathouse IV, Jun 10 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A025441(n):
        f = factorint(n).items()
        return -int(not (any((e-1 if p == 2 else e)&1 for p,e in f) or n&1)) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 0 # Chai Wah Wu, Sep 08 2022

Formula

a(A025302(n)) = 1. - Reinhard Zumkeller, Dec 20 2013
a(n) = Sum_{ m: m^2|n } A157228(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = [x^n y^2] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019
a(n) = Sum_{i=1..floor((n-1)/2)} c(i) * c(n-i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020
a(n) = A000161(n) - A093709(n). - Andrey Zabolotskiy, Apr 12 2022

A003051 Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are equivalent if they are related by a rotation or reflection preserving the hexagonal lattice.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 3, 5, 4, 4, 3, 8, 4, 5, 6, 9, 4, 8, 5, 10, 8, 7, 5, 15, 7, 8, 9, 13, 6, 14, 7, 15, 10, 10, 10, 20, 8, 11, 12, 20, 8, 18, 9, 17, 16, 13, 9, 28, 12, 17, 14, 20, 10, 22, 14, 25, 16, 16, 11, 34, 12, 17, 21, 27, 16, 26, 13, 24, 18, 26, 13, 40, 14
Offset: 1

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
From Andrey Zabolotskiy, Mar 10 2018: (Start)
If only primitive sublattices are considered, we get A003050.
Here only rotations and reflections preserving the parent hexagonal lattice are allowed. If reflections are not allowed, we get A145394. If any rotations and reflections are allowed, we get A300651.
In other words, the parent lattice of the sublattices under consideration has Patterson symmetry group p6mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A145394 (p6).
Rutherford says at p. 161 that his sequence for p6mm differs from this sequence, but it seems that with the current definition and terms of this sequence, this actually is his p6mm sequence, and the sequence he thought to be this one is actually A300651. Also, he says that a(n) != A300651(n) only when A002324(n) > 2 (first time happens at n = 49), but actually these two sequences differ at other terms, too, for example, at n = 42 (see illustration). (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{ m^2 | n } A003050(n/m^2).
a(n) = (A000203(n) + 2*A002324(n) + 3*A145390(n))/6. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ d|n } A112689(d+1). - Andrey Zabolotskiy, Aug 29 2019
a(n) = Sum_{ d|n } floor(d/6) + 1 - 1*[d == 2 or 6 (mod 12)] + 1*[d == 4 (mod 12)]. [Kurth] - Brahadeesh Sankarnarayanan, Feb 24 2023

A069734 Number of pairs (p,q), 0<=p<=q, such that p+q divides n.

Original entry on oeis.org

1, 3, 3, 6, 4, 9, 5, 11, 8, 12, 7, 19, 8, 15, 14, 20, 10, 24, 11, 26, 18, 21, 13, 37, 17, 24, 22, 33, 16, 42, 17, 37, 26, 30, 26, 53, 20, 33, 30, 52, 22, 54, 23, 47, 42, 39, 25, 71, 30, 51, 38, 54, 28, 66, 38, 67, 42, 48, 31, 94, 32, 51, 55, 70, 44, 78, 35, 68, 50, 78, 37, 108
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also number of orientable coverings of the Klein bottle with 2n lists (orientable m-list coverings exist only for even m).
Equals row sums of triangle A178650. - Gary W. Adamson, May 31 2010
Also number of inequivalent sublattices of index n of the rectangular lattice, that has the p2mm (pmm) symmetry group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A145394 (p6), A003051 (p6mm). - Andrey Zabolotskiy, Mar 12 2018

Examples

			There are 9 pairs (p,q), 0<=p<=q, such that p+q divides 6: (0,1), (0,2), (0,3), (0,6), (1,1), (1, 2), (1, 5), (2, 4), (3, 3); thus a(6) = 9.
x + 3*x^2 + 3*x^3 + 6*x^4 + 4*x^5 + 9*x^6 + 5*x^7 + 11*x^8 + 8*x^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): a := n -> (sigma(n) + tau(n) + `if`(irem(n,2) = 1, 0, tau(n/2)))/2: seq(a(n), n=1..72); # Peter Luschny, Jul 20 2019
  • Mathematica
    a[n_] := (DivisorSigma[1, n] + DivisorSigma[0, n] + If[OddQ[n], 0, DivisorSigma[0, n/2]])/2;
    Array[a, 72] (* Jean-François Alcover, Aug 27 2019, from Maple *)
  • PARI
    {a(n) = if( n<1, 0, sum( k=1, n, sum( j=0, k, n%(j+k) == 0)))} /* Michael Somos, Mar 24 2012 */

Formula

a(n) = A046524(2n) - A069733(2n).
Inverse Moebius transform of: 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... G.f.: Sum_{n>0} x^n*(1+x^n-x^(2*n))/(1-x^(2*n))/(1-x^n). - Vladeta Jovovic, Feb 03 2003
a(n) = (A000203(n) + A069735(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A304182(n/m^2) + A304183(n/m^2) = A069735(n) + Sum_{ m: m^2|n } A304183(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008619(d) = Sum_{ d|n } (1 + floor(d/2)). - Andrey Zabolotskiy, Jul 20 2019
a(n) = (A007503(n) + A183063(n))/2. - Peter Luschny, Jul 20 2019

Extensions

New description from Vladeta Jovovic, Feb 03 2003

A159842 Number of symmetrically-distinct supercells (sublattices) of the fcc and bcc lattices (n is the "volume factor" of the supercell).

Original entry on oeis.org

1, 2, 3, 7, 5, 10, 7, 20, 14, 18, 11, 41, 15, 28, 31, 58, 21, 60, 25, 77, 49, 54, 33, 144, 50, 72, 75, 123, 49, 158, 55, 177, 97, 112, 99, 268, 75, 136, 129, 286, 89, 268, 97, 249, 218, 190, 113, 496, 146, 280, 203, 333, 141, 421, 207, 476, 247, 290, 171, 735
Offset: 1

Views

Author

Gus Hart (gus_hart(AT)byu.edu), Apr 23 2009

Keywords

Comments

The number of fcc/bcc supercells (sublattices) as a function of n (volume factor) is equivalent to the sequence A001001. But many of these sublattices are symmetrically equivalent. The current sequence lists those that are symmetrically distinct.
Is this the same as A045790? - R. J. Mathar, Apr 28 2009
This sequence also gives number of sublattices of index n for the diamond structure - see Hanany, Orlando & Reffert, sec. 6.3 (they call it the tetrahedral lattice). Indeed: the diamond structure consists of two interpenetrating fcc lattices, and all sites of any sublattice should belong to the same fcc lattice because every sublattice is inversion-symmetric. - Andrey Zabolotskiy, Mar 18 2018

Crossrefs

Programs

  • Python
    def dc(f, *r): # Dirichlet convolution of multiple sequences
        if not r:
            return f
        return lambda n: sum(f(d)*dc(*r)(n//d) for d in range(1, n+1) if n%d == 0)
    def fin(*a): # finite sequence
        return lambda n: 0 if n > len(a) else a[n-1]
    def per(*a): # periodic sequences
        return lambda n: a[n%len(a)]
    u, N, N2 = lambda n: 1, lambda n: n, lambda n: n**2
    def a(n): # Hanany, Orlando & Reffert, sec. 6.3
        return (dc(u, N, N2)(n) + 9*dc(fin(1, -1, 0, 4), u, u, N)(n)
                + 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n)
                + 6*dc(fin(1, -1, 0, 2), u, u, per(0, 1, 0, -1))(n))//24
    print([a(n) for n in range(1, 300)])
    # Andrey Zabolotskiy, Mar 18 2018

Extensions

Terms a(20) and beyond from Andrey Zabolotskiy, Mar 18 2018

A145392 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/2 to give the other.

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 4, 8, 7, 10, 6, 14, 8, 12, 12, 16, 10, 20, 10, 22, 16, 18, 12, 30, 17, 22, 20, 28, 16, 36, 16, 32, 24, 28, 24, 46, 20, 30, 28, 46, 22, 48, 22, 42, 40, 36, 24, 62, 29, 48, 36, 50, 28, 60, 36, 60, 40, 46, 30, 84, 32, 48, 52, 64, 44, 72, 34, 64, 48, 72
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

From Andrey Zabolotskiy, Mar 12 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p4, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145393 (p4mm), A145394 (p6), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A145393 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/2; see illustration in links) as equivalent, we get A054345. If we count sublattices related by any rotation or reflection as equivalent, we get A054346.
Rutherford says at p. 161 that a(n) != A054345(n) only when A002654(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 15 (see illustration). (End)

Crossrefs

Programs

Formula

a(n) = (A000203(n) + A002654(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000089(n/m^2) + A157224(n/m^2) = A002654(n) + Sum_{ m: m^2|n } A157224(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A004525(d). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018

A145394 Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/3 to give the other.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 4, 5, 5, 6, 4, 10, 6, 8, 8, 11, 6, 13, 8, 14, 12, 12, 8, 20, 11, 14, 14, 20, 10, 24, 12, 21, 16, 18, 16, 31, 14, 20, 20, 30, 14, 32, 16, 28, 26, 24, 16, 42, 21, 31, 24, 34, 18, 40, 24, 40, 28, 30, 20, 56, 22, 32, 36, 43, 28, 48, 24, 42, 32, 48, 24, 65, 26, 38, 42, 48, 32, 56, 28, 62
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

Also, apparently a(n) is the number of nonequivalent (up to lattice-preserving affine transformation) triangles on 2D square lattice of area n/2 [Karpenkov]. - Andrey Zabolotskiy, Jul 06 2017
From Andrey Zabolotskiy, Jan 18 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p6, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A003051 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/3; see illustration in links) as equivalent, we get A054384. If we count sublattices related by any rotation or reflection as equivalent, we get A300651.
Rutherford says at p. 161 that a(n) != A054384(n) only when A002324(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 14 (see illustration). (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[1, n] + 2 DivisorSum[n, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0] &])/3; Array[a, 80] (* Jean-François Alcover, Dec 03 2015 *)
  • PARI
    A002324(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)));
    A000203(n) = if( n<1, 0, sigma(n));
    a(n) = (A000203(n) + 2 * A002324(n)) / 3;
    \\ Joerg Arndt, Oct 13 2013

Formula

a(n) = (A000203(n) + 2 * A002324(n))/3. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000086(n/m^2) + A157227(n/m^2) = A002324(n) + Sum_{ m: m^2|n } A157227(n/m^2). [Rutherford] - Andrey Zabolotskiy, Apr 23 2018
a(n) = Sum_{ d|n } A008611(d-1). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Dec 14 2017

A145391 Number of inequivalent sublattices of index n in centered rectangular lattice.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 5, 10, 8, 10, 7, 17, 8, 13, 14, 19, 10, 21, 11, 24, 18, 19, 13, 35, 17, 22, 22, 31, 16, 38, 17, 36, 26, 28, 26, 50, 20, 31, 30, 50, 22, 50, 23, 45, 42, 37, 25, 69, 30, 48, 38, 52, 28, 62, 38, 65, 42, 46, 31, 90, 32, 49, 55, 69, 44, 74, 35, 66, 50, 74
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

The centered rectangular lattice has symmetry group c2mm, or cmm. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145392 (p4), A145393 (p4mm), A145394 (p6), A003051 (p6mm). - Andrey Zabolotskiy, Mar 12 2018

Crossrefs

Programs

  • Mathematica
    a060594[n_] := Switch[Mod[n, 8], 2|6, 2^(PrimeNu[n] - 1), 1|3|4|5|7, 2^PrimeNu[n], 0, 2^(PrimeNu[n] + 1)];
    a145390[n_] := Sum[If[IntegerQ[Sqrt[d]], a060594[n/d], 0], {d, Divisors[n]} ];
    a[n_] := (DivisorSigma[1, n] + a145390[n])/2;
    Array[a, 100] (* Jean-François Alcover, Aug 31 2018 *)

Formula

a(n) = (A000203(n) + A145390(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A060594(n/m^2) + A157223(n/m^2) = A145390(n) + Sum_{ m: m^2|n } A157223(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A004525(d+1). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018
New name from Andrey Zabolotskiy, Jan 19 2022

A157228 Number of primitive inequivalent inclined square sublattices of square lattice of index n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2009

Keywords

Comments

From Andrey Zabolotskiy, May 09 2018: (Start)
Also, the number of partitions of n into 2 distinct coprime squares.
All such sublattices (including non-primitive ones) are counted in A025441.
The primitive sublattices that have the same symmetries (including the orientation of the mirrors) as the parent lattice are not counted here; they are counted in A019590, and all such sublattices (including non-primitive ones) are counted in A053866.
For n > 2, equals A193138. (End)

Crossrefs

Cf. A193138, A145393 (all sublattices of the square lattice), A025441, A019590, A053866, A157226, A157230, A157231, A000089, A304182, A224450, A224770, A281877, A024362.

Formula

a(n) = (A000089(n) - A019590(n)) / 2. - Andrey Zabolotskiy, May 09 2018
a(n) = 1 if n>2 is in A224450, a(n) = 2 if n is in A224770, a(n) is a higher power of 2 if n is in A281877 (first time reaches 8 at n = 32045). - Andrey Zabolotskiy, Sep 30 2018
a(n) = b(n) for odd n, a(n) = b(n/2) for even n, where b(n) = A024362(n). - Andrey Zabolotskiy, Jan 23 2022

Extensions

New name and more terms from Andrey Zabolotskiy, May 09 2018
Showing 1-10 of 19 results. Next