cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A140673 a(n) = 3*n*(n + 5)/2.

Original entry on oeis.org

0, 9, 21, 36, 54, 75, 99, 126, 156, 189, 225, 264, 306, 351, 399, 450, 504, 561, 621, 684, 750, 819, 891, 966, 1044, 1125, 1209, 1296, 1386, 1479, 1575, 1674, 1776, 1881, 1989, 2100, 2214, 2331, 2451, 2574, 2700, 2829, 2961, 3096
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

a(n) equals the number of vertices of the A256666(n)-th graph (see Illustration of initial terms in A256666 Links). - Ivan N. Ianakiev, Apr 20 2015

Crossrefs

Cf. A055998.
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    Table[Sum[i + n - 3, {i, 6, n}], {n, 5, 52}] (* Zerinvary Lajos, Jul 11 2009 *)
    Table[3 n (n + 5)/2, {n, 0, 50}] (* Bruno Berselli, Sep 05 2018 *)
    LinearRecurrence[{3,-3,1},{0,9,21},50] (* Harvey P. Dale, Jul 20 2023 *)
  • PARI
    concat(0, Vec(3*x*(3 - 2*x)/(1 - x)^3 + O(x^100))) \\ Michel Marcus, Apr 20 2015
    
  • PARI
    a(n) = 3*n*(n+5)/2; \\ Altug Alkan, Sep 05 2018

Formula

a(n) = A055998(n)*3 = (3*n^2 + 15*n)/2 = n*(3*n + 15)/2.
a(n) = 3*n + a(n-1) + 6 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(3 - 2*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 18*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 137/450.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/15 - 47/450. (End)

A140674 a(n) = n*(3*n + 17)/2.

Original entry on oeis.org

0, 10, 23, 39, 58, 80, 105, 133, 164, 198, 235, 275, 318, 364, 413, 465, 520, 578, 639, 703, 770, 840, 913, 989, 1068, 1150, 1235, 1323, 1414, 1508, 1605, 1705, 1808, 1914, 2023, 2135, 2250, 2368, 2489, 2613, 2740, 2870, 3003, 3139
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

Formula

a(n) = (3*n^2 + 17*n)/2.
a(n) = 7*n + 3*A000217(n). - Reinhard Zumkeller, May 28 2008
a(n) = 3*n + a(n-1) + 7 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: x*(10 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 20*x)*exp(x). - G. C. Greubel, Jul 17 2017

A370238 a(n) = n*(3*n + 23)/2.

Original entry on oeis.org

0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
Offset: 0

Views

Author

Torlach Rush, Feb 12 2024

Keywords

Comments

a(a(1)) = A000566(a(1)). This is also true for each of the sequences provided in the formulae below; e.g., A151542(A151542(1)) = A000566(A151542(1)).

Crossrefs

Programs

  • Mathematica
    Table[n(3n+23)/2,{n,0,48}] (* James C. McMahon, Feb 20 2024 *)
  • Python
    def a(n): return n*(3*n+23)//2

Formula

a(n) = n*(3*n + 23)/2 = A277976(n)/2.
G.f.: x*(13-10*x)/(1-x)^3.
a(n) = A151542(n) + n.
a(n) = A140675(n) + 2*n.
a(n) = A140674(n) + 3*n.
a(n) = A140673(n) + 4*n.
a(n) = A140672(n) + 5*n.
a(n) = A059845(n) + 6*n.
a(n) = A140091(n) + 7*n.
a(n) = A140090(n) + 8*n.
a(n) = A115067(n) + 9*n.
a(n) = A045943(n) + 10*n.
a(n) = A005449(n) + 11*n.
a(n) = A000326(n) + A008594(n).
Sum_{n>=1} 1/a(n) = 823467/2769844 + sqrt(3)*Pi/69 -3*log(3)/23 = 0.2328608... - R. J. Mathar, Apr 23 2024
E.g.f.: exp(x)*x*(26 + 3*x)/2. - Stefano Spezia, Apr 26 2024
Previous Showing 11-13 of 13 results.