A302537
a(n) = (n^2 + 13*n + 2)/2.
Original entry on oeis.org
1, 8, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205, 1255, 1306, 1358, 1411, 1465, 1520, 1576
Offset: 0
Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n):
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o . . . . . o
. o o o o o o o . . . . o o . . . . . o
. o o o o o . . . o o . . . . o o . . . . . o
. o o o . . o o . . . o o . . . . o o . . . . . o
. o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o . o o . . o o . . . o o . . . . o o . . . . . o
. o o o o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
----------------------------------------------------------------------
. 1 8 16 25 35 46 58
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
Sequences whose n-th terms are of the form binomial(n, 2) + n*k + 1:
-
A302537:= func< n | ((n+1)^2 +12*n +1)/2 >;
[A302537(n): n in [0..50]]; // G. C. Greubel, Jan 21 2025
-
a := n -> (n^2 + 13*n + 2)/2;
seq(a(n), n = 0 .. 100);
-
Table[(n^2 + 13 n + 2)/2, {n, 0, 100}]
CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *)
LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
-
makelist((n^2 + 13*n + 2)/2, n, 0, 100);
-
a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
-
def A302537(n): return (n**2 + 13*n + 2)//2
print([A302537(n) for n in range(51)]) # G. C. Greubel, Jan 21 2025
A371417
Triangle read by rows: T(n,k) is the number of complete compositions of n with k parts.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 3, 4, 1, 0, 0, 0, 6, 6, 5, 1, 0, 0, 0, 0, 16, 10, 6, 1, 0, 0, 0, 0, 12, 30, 15, 7, 1, 0, 0, 0, 0, 12, 35, 50, 21, 8, 1, 0, 0, 0, 0, 24, 50, 75, 77, 28, 9, 1, 0, 0, 0, 0, 0, 90, 126, 140, 112, 36, 10, 1
Offset: 0
The triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10
n=0: 1;
n=1: 0, 1;
n=2: 0, 0, 1;
n=3: 0, 0, 2, 1;
n=4: 0, 0, 0, 3, 1;
n=5: 0, 0, 0, 3, 4, 1;
n=6: 0, 0, 0, 6, 6, 5, 1;
n=7: 0, 0, 0, 0, 16, 10, 6, 1;
n=8: 0, 0, 0, 0, 12, 30, 15, 7, 1;
n=9: 0, 0, 0, 0, 12, 35, 50, 21, 8, 1;
n=10: 0, 0, 0, 0, 24, 50, 75, 77, 28, 9, 1;
...
For n = 5 there are a total of 8 complete compositions:
T(5,3) = 3: (221), (212), (122)
T(5,4) = 4: (2111), (1211), (1121), (1112)
T(5,5) = 1: (11111)
A107428 counts gap-free compositions.
A251729 counts gap-free but not complete compositions.
Cf.
A107429 (row sums give complete compositions of n),
A000670 (column sums),
A152947 (number of nonzero terms per column).
-
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(i=0, t!, 0), `if`(i<1 or n (p-> seq(coeff(p, x, i), i=0..n))(add(b(n, i, 0), i=0..n)):
seq(T(n), n=0..12); # Alois P. Heinz, Apr 03 2024
-
G(N)={ my(z='z+O('z^N)); Vec(sum(i=1,N,z^(i*(i+1)/2)*t^i*prod(j=1,i,sum(k=0,N, (z^(j*k)*t^k)/(k+1)!))))}
my(v=G(10)); for(n=0, #v, if(n<1,print([1]), my(p=v[n], r=vector(n+1)); for(k=0, n, r[k+1] =k!*polcoeff(p, k)); print(r)))
A092365
Coefficient of X^2 in expansion of (1 + n*X + n*X^2)^n.
Original entry on oeis.org
1, 8, 36, 112, 275, 576, 1078, 1856, 2997, 4600, 6776, 9648, 13351, 18032, 23850, 30976, 39593, 49896, 62092, 76400, 93051, 112288, 134366, 159552, 188125, 220376, 256608, 297136, 342287, 392400, 447826, 508928, 576081, 649672, 730100, 817776
Offset: 1
-
[n^2*(Binomial(n, 2)+1): n in [1..40]]; // Vincenzo Librandi, Aug 15 2017
-
Coefficient[Table[Expand[(1+n x+n x^2)^n],{n,60}],x,2] (* Harvey P. Dale, Mar 13 2011 *)
Table[n^2 (Binomial[n, 2] + 1), {n, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 36, 112, 275}, 40] (* Vincenzo Librandi, Aug 15 2017 *)
-
q(n)=(1+n*X+n*X^2)^n; for(i=1,40,print1(","polcoeff(q(i),2)))
A159938
The number of homogeneous trisubstituted linear alkanes.
Original entry on oeis.org
2, 6, 16, 36, 70, 122, 196, 296, 426, 590, 792, 1036, 1326, 1666, 2060, 2512, 3026, 3606, 4256, 4980, 5782, 6666, 7636, 8696, 9850, 11102, 12456, 13916, 15486, 17170, 18972, 20896, 22946, 25126, 27440, 29892, 32486
Offset: 2
The number of homogeneous trisubstituted linear alkane with ten carbon atoms is 426.
A320530
T(n,k) = k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2 for 0 < k <= n and T(n,0) = A154272(n+1), square array read by antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 7, 3, 1, 0, 7, 26, 16, 4, 1, 0, 11, 88, 90, 29, 5, 1, 0, 16, 272, 459, 220, 46, 6, 1, 0, 22, 784, 2133, 1504, 440, 67, 7, 1, 0, 29, 2144, 9234, 9344, 3775, 774, 92, 8, 1, 0, 37, 5632, 37908, 54016, 29375, 7992, 1246, 121, 9
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
1, 2, 7, 16, 29, 46, 67, ...
0, 4, 26, 90, 220, 440, 774, ...
0, 7, 88, 459, 1504, 3775, 7992, ...
0, 11, 272, 2133, 9344, 29375, 74736, ...
0, 16, 784, 9234, 54016, 212500, 649296, ...
0, 22, 2144, 37908, 295936, 1456250, 5342112, ...
...
T(3,2) = 2^3 + 2^(3 - 2)*3*(3 - 1)*(2*(2 - 1) + 1)/2 = 26. The corresponding ternary words are abc, acb, cab, bac, bca, cba, bbc, bcb, cbb, ccc. Next, let a = {00}, b = {11} and c = {01, 10}. The resulting binary words are
abc: 001101, 001110;
acb: 000111, 001011;
cab: 010011, 100011;
bac: 110001, 110010;
bca: 110100, 111000;
cba: 011100, 101100;
bbc: 111101, 111110;
bcb: 110111, 111011;
cbb: 011111, 101111;
ccc: 010101, 101010, 010110, 011001, 100101, 101001, 100110, 011010.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If[k > 0, k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2, If[k == 0 && (n == 0 || n == 1), 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 10}]//Flatten
-
t(n, k) := k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1)$
u(n) := if n = 0 or n = 1 then 1 else 0$
T(n, k) := if k = 0 then u(n) else t(n,k)$
tabl(nn) := for n:0 thru 10 do print(makelist(T(n, k), k, 0, nn))$
A342939
a(n) is the Skolem number of the triangular grid graph T_n.
Original entry on oeis.org
1, 2, 5, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379, 1432, 1486
Offset: 1
For n > 1, 3*
A002061(n) gives the Skolem number of the hexagonal grid graph H_n.
-
LinearRecurrence[{3,-3,1},{1,2,5,7,11,16},55]
A240168
T(n,k) is the number of unlabeled graphs of n vertices and k edges that have endpoints, where an endpoint is a vertex with degree 1.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 5, 4, 2, 1, 1, 2, 4, 8, 13, 15, 16, 11, 5, 2, 1, 1, 2, 4, 9, 19, 35, 55, 75, 83, 72, 51, 29, 13, 5, 2, 1, 1, 2, 4, 10, 22, 50, 105, 196, 338, 511, 649, 695, 627, 473, 304, 172, 83, 35, 14, 5, 2, 1
Offset: 1
First few rows of irregular triangle are:
..0
..1
..1....1
..1....2....2....1
..1....2....3....5....4....2....1
..1....2....4....8...13...15...16...11....5....2....1
..1....2....4....9...19...35...55...75...83...72...51...29...13....5....2....1
...
A282283
Recursive 2-parameter sequence allowing calculation of the Euler Totient function.
Original entry on oeis.org
0, 1, -1, 1, 2, -4, 2, -4, 10, -6, -2, 2, 6, -16, 10, 4, -6, 8, -10, 4, -10, 28, -18, -8, 10, -10, 10, -2, 8, -10, 0, 2, 12, -34, 22, 10, -12, 12, -22, 30, -30, 6, 10, -10, 8, 0, 6, -14, 6, -18, 52, -34, -16, 18, -18, 34, -36, 20, 10, -6, -2, 4, -28, 18, 8
Offset: 0
The first few rows are:
0, 1;
-1, 1;
2, -4, 2;
-4, 10, -6, -2, 2;
6, -16, 10, 4, -6, 8, -10, 4;
-10, 28, -18, -8, 10, -10, 10, -2, 8, -10, 0, 2;
12, -34, 22, 10, -12, 12, -22, 30, -30, 6, 10, -10, 8, 0, 6, -14, 6;
-
U[n_, m_] := U[n, m] = If[n > 1, U[n - 1, n*(n - 1)/2 - m]*(-1)^n - U[n - 1, m], 0]
U[1, m_] := U[1, m] = If[m == 0, 1, 0]
Q[n_, m_] := U[n, m - 2] - 2*U[n, m - 1] + U[n, m]
nu[n_]:=(n-1)*n/2+2-n
a[n_, m_] := a[n, m] = If[(m < 0) || (nu[n] < m), 0, a[n - 1, m - n + 1] - a[n - 1, m] - a[n - 1, nu[n - 1]]*Q[n - 1, m]]
a[1, m_] := a[1, m] = If[m == 1, 1, 0]
Table[Table[a[n, m], {m, 0, nu[n]}], {n, 1, 20}]
Table[a[n, nu[n]], {n, 1, 50}]
A303273
Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0
The array T(n,k) begins
1 1 1 1 1 1 1 1 1 1 1 1 1 ... A000012
1 2 3 4 5 6 7 8 9 10 11 12 13 ... A000027
2 4 6 8 10 12 14 16 18 20 22 24 26 ... A005843
4 7 10 13 16 19 22 25 28 31 34 37 40 ... A016777
7 11 15 19 23 27 31 35 39 43 47 51 55 ... A004767
11 16 21 26 31 36 41 46 51 56 61 66 71 ... A016861
16 22 28 34 40 46 52 58 64 70 76 82 88 ... A016957
22 29 36 43 50 57 64 71 78 85 92 99 106 ... A016993
29 37 45 53 61 69 77 85 93 101 109 117 125 ... A004770
37 46 55 64 73 82 91 100 109 118 127 136 145 ... A017173
46 56 66 76 86 96 106 116 126 136 146 156 166 ... A017341
56 67 78 89 100 111 122 133 144 155 166 177 188 ... A017401
67 79 91 103 115 127 139 151 163 175 187 199 211 ... A017605
79 92 105 118 131 144 157 170 183 196 209 222 235 ... A190991
...
The inverse binomial transforms of the columns are
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 10 11 12 ...
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1 1
1 2 2
1 3 4 4
1 4 6 7 7
1 5 8 10 11 11
1 6 10 13 15 16 16
1 7 12 16 19 21 22 22
1 8 14 19 23 26 28 29 29
1 9 16 22 27 31 34 36 37 37
1 10 18 25 31 36 40 43 45 46 46
...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
-
T := (n, k) -> binomial(n, 2) + k*n + 1;
for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
-
Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
-
T(n, k) := binomial(n, 2)+ k*n + 1$
for n:0 thru 20 do
print(makelist(T(n, k), k, 0, 20));
-
T(n,k) = binomial(n, 2) + k*n + 1;
tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018
A330794
Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -1, 1, -3, 1, 1, 4, 2, -4, 1, -1, -7, 10, 4, -5, 1, 1, -14, -25, 16, 7, -6, 1, -1, 65, -21, -55, 21, 11, -7, 1, 1, -24, 196, -8, -98, 24, 16, -8, 1, -1, -367, -204, 400, 42, -154, 24, 22, -9, 1, 1, 774, -963, -688, 666, 148, -222, 20, 29, -10, 1
Offset: 0
Triangle starts:
[0] 1;
[1] -1, 1;
[2] 1, -2, 1;
[3] -1, 1, -3, 1;
[4] 1, 4, 2, -4, 1;
[5] -1, -7, 10, 4, -5, 1;
[6] 1, -14, -25, 16, 7, -6, 1;
[7] -1, 65, -21, -55, 21, 11, -7, 1;
[8] 1, -24, 196, -8, -98, 24, 16, -8, 1;
[9] -1, -367, -204, 400, 42, -154, 24, 22, -9, 1;
-
m=30;
A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x,0,m}, {t,0,m}], t], x];
M:= M= Table[If[k<=n, A322942[[n+1,k+1]], 0], {n,0,m}, {k,0,m}];
g:= g= Inverse[M];
A330794[n_, k_]:= g[[n+1,k+1]];
Table[A330794[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
-
# uses[riordan_array from A256893]
Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1))
riordan_array(Jacobsthal, Jacobsthal, 10).inverse()
Comments