cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A302537 a(n) = (n^2 + 13*n + 2)/2.

Original entry on oeis.org

1, 8, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205, 1255, 1306, 1358, 1411, 1465, 1520, 1576
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 7, 1, 0, 0, 0, ...].
Numbers m > 0 such that 8*m + 161 is a square.

Examples

			Illustration of initial terms (by the formula a(n) = A052905(n) + 3*n):
.                                                                    o
.                                                                  o o
.                                                    o           o o o
.                                                  o o         o o o o
.                                      o         o o o       o o o o o
.                                    o o       o o o o     o o o o o o
.                          o       o o o     o o o o o   o . . . . . o
.                        o o     o o o o   o . . . . o   o . . . . . o
.                o     o o o   o . . . o   o . . . . o   o . . . . . o
.              o o   o . . o   o . . . o   o . . . . o   o . . . . . o
.        o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.      o o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.  o   o o   o o o   o o o o   o o o o o   o o o o o o   o o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
.        o     o o     o o o     o o o o     o o o o o     o o o o o o
----------------------------------------------------------------------
.  1     8      16        25          35            46              58
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Sequences whose n-th terms are of the form binomial(n, 2) + n*k + 1:
A152947 (k = 0); A000124 (k = 1); A000217 (k = 2); A034856 (k = 3);
A052905 (k = 4); A051936 (k = 5); A246172 (k = 6).

Programs

  • Magma
    A302537:= func< n | ((n+1)^2 +12*n +1)/2 >;
    [A302537(n): n in [0..50]]; // G. C. Greubel, Jan 21 2025
    
  • Maple
    a := n -> (n^2 + 13*n + 2)/2;
    seq(a(n), n = 0 .. 100);
  • Mathematica
    Table[(n^2 + 13 n + 2)/2, {n, 0, 100}]
    CoefficientList[ Series[(5x^2 - 5x - 1)/(x - 1)^3, {x, 0, 50}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 16}, 51] (* Robert G. Wilson v, May 19 2018 *)
  • Maxima
    makelist((n^2 + 13*n + 2)/2, n, 0, 100);
    
  • PARI
    a(n) = (n^2 + 13*n + 2)/2; \\ Altug Alkan, Apr 12 2018
    
  • Python
    def A302537(n): return (n**2 + 13*n + 2)//2
    print([A302537(n) for n in range(51)]) # G. C. Greubel, Jan 21 2025

Formula

a(n) = binomial(n + 1, 2) + 6*n + 1 = binomial(n, 2) + 7*n + 1.
a(n) = a(n-1) + n + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, where a(0) = 1, a(1) = 8 and a(2) = 16.
a(n) = 2*a(n-1) - a(n-2) + 1.
a(n) = A004120(n+1) for n > 1.
a(n) = A056119(n) + 1.
a(n) = A152947(n+1) + A008589(n).
a(n) = A060544(n+1) - A002939(n).
a(n) = A000578(n+1) - A162261(n) for n > 0.
G.f.: (1 + 5*x - 5*x^2)/(1 - x)^3.
E.g.f.: (1/2)*(2 + 14*x + x^2)*exp(x).
Sum_{n>=0} 1/a(n) = 24097/45220 + 2*Pi*tan(sqrt(161)*Pi/2) / sqrt(161) = 1.4630922534498496... - Vaclav Kotesovec, Apr 11 2018

A371417 Triangle read by rows: T(n,k) is the number of complete compositions of n with k parts.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 3, 4, 1, 0, 0, 0, 6, 6, 5, 1, 0, 0, 0, 0, 16, 10, 6, 1, 0, 0, 0, 0, 12, 30, 15, 7, 1, 0, 0, 0, 0, 12, 35, 50, 21, 8, 1, 0, 0, 0, 0, 24, 50, 75, 77, 28, 9, 1, 0, 0, 0, 0, 0, 90, 126, 140, 112, 36, 10, 1
Offset: 0

Views

Author

John Tyler Rascoe, Mar 23 2024

Keywords

Comments

A composition (ordered partition) is complete if the set of parts both covers an interval (is gap-free) and contains 1.

Examples

			The triangle begins:
    k=0  1  2  3   4   5   6   7   8   9  10
n=0:  1;
n=1:  0, 1;
n=2:  0, 0, 1;
n=3:  0, 0, 2, 1;
n=4:  0, 0, 0, 3,  1;
n=5:  0, 0, 0, 3,  4,  1;
n=6:  0, 0, 0, 6,  6,  5,  1;
n=7:  0, 0, 0, 0, 16, 10,  6,  1;
n=8:  0, 0, 0, 0, 12, 30, 15,  7,  1;
n=9:  0, 0, 0, 0, 12, 35, 50, 21,  8,  1;
n=10: 0, 0, 0, 0, 24, 50, 75, 77, 28,  9,  1;
...
For n = 5 there are a total of 8 complete compositions:
  T(5,3) = 3: (221), (212), (122)
  T(5,4) = 4: (2111), (1211), (1121), (1112)
  T(5,5) = 1: (11111)
		

Crossrefs

A107428 counts gap-free compositions.
A251729 counts gap-free but not complete compositions.
Cf. A107429 (row sums give complete compositions of n), A000670 (column sums), A152947 (number of nonzero terms per column).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
         `if`(i=0, t!, 0), `if`(i<1 or n (p-> seq(coeff(p, x, i), i=0..n))(add(b(n, i, 0), i=0..n)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Apr 03 2024
  • PARI
    G(N)={ my(z='z+O('z^N)); Vec(sum(i=1,N,z^(i*(i+1)/2)*t^i*prod(j=1,i,sum(k=0,N, (z^(j*k)*t^k)/(k+1)!))))}
    my(v=G(10)); for(n=0, #v, if(n<1,print([1]), my(p=v[n], r=vector(n+1)); for(k=0, n, r[k+1] =k!*polcoeff(p, k)); print(r)))

Formula

T(n,k) = k!*[z^n*t^k] Sum_{i>0} z^(i*(i+1)/2)*t^i * Product_{j=1..i} Sum_{k>=0} (z^(j*k)*t^k)/(k+1)!.

A092365 Coefficient of X^2 in expansion of (1 + n*X + n*X^2)^n.

Original entry on oeis.org

1, 8, 36, 112, 275, 576, 1078, 1856, 2997, 4600, 6776, 9648, 13351, 18032, 23850, 30976, 39593, 49896, 62092, 76400, 93051, 112288, 134366, 159552, 188125, 220376, 256608, 297136, 342287, 392400, 447826, 508928, 576081, 649672, 730100, 817776
Offset: 1

Views

Author

Jon Perry, Mar 19 2004

Keywords

Crossrefs

Programs

  • Magma
    [n^2*(Binomial(n, 2)+1): n in [1..40]]; // Vincenzo Librandi, Aug 15 2017
  • Mathematica
    Coefficient[Table[Expand[(1+n x+n x^2)^n],{n,60}],x,2]  (* Harvey P. Dale, Mar 13 2011 *)
    Table[n^2 (Binomial[n, 2] + 1), {n, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 36, 112, 275}, 40] (* Vincenzo Librandi, Aug 15 2017 *)
  • PARI
    q(n)=(1+n*X+n*X^2)^n; for(i=1,40,print1(","polcoeff(q(i),2)))
    

Formula

a(n) = n^2*(binomial(n, 2) + 1).
G.f.: x*(1 + 3*x + 6*x^2 + 2*x^3)/(1-x)^5. [Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009; corrected by R. J. Mathar, Sep 16 2009]
From Stefano Spezia, Oct 08 2022: (Start)
E.g.f.: exp(x)*x*(2 + 6*x + 5*x^2 + x^3)/2.
a(n) = A000290(n)*A152947(n+1). (End)

A159938 The number of homogeneous trisubstituted linear alkanes.

Original entry on oeis.org

2, 6, 16, 36, 70, 122, 196, 296, 426, 590, 792, 1036, 1326, 1666, 2060, 2512, 3026, 3606, 4256, 4980, 5782, 6666, 7636, 8696, 9850, 11102, 12456, 13916, 15486, 17170, 18972, 20896, 22946, 25126, 27440, 29892, 32486
Offset: 2

Views

Author

Parthasarathy Nambi, Apr 26 2009

Keywords

Comments

See the paper by Valentin Vankov Iliev for details.
This sequence is related to A152947 by a(n) = (n-1)*A152947(n) + sum( A152947(i), i=1..n-1 ). - Bruno Berselli, Dec 19 2013

Examples

			The number of homogeneous trisubstituted linear alkane with ten carbon atoms is 426.
		

Crossrefs

Formula

a(n) = (1/3)*(2*n^3 - 9*n^2 + 19*n - 12), where n is the number of carbons.
a(n) = 2*A081489(n-1) = (n-1)*(2*n^2-7*n+12)/3. - R. J. Mathar, Apr 28 2009
G.f.: 2*x^2*(1-x+2*x^2)/(1-x)^4. - Colin Barker, Aug 06 2012

Extensions

More terms from Colin Barker, Aug 06 2012

A320530 T(n,k) = k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2 for 0 < k <= n and T(n,0) = A154272(n+1), square array read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 7, 3, 1, 0, 7, 26, 16, 4, 1, 0, 11, 88, 90, 29, 5, 1, 0, 16, 272, 459, 220, 46, 6, 1, 0, 22, 784, 2133, 1504, 440, 67, 7, 1, 0, 29, 2144, 9234, 9344, 3775, 774, 92, 8, 1, 0, 37, 5632, 37908, 54016, 29375, 7992, 1246, 121, 9
Offset: 0

Views

Author

Keywords

Comments

Construct a length n ternary word over the alphabet {a, b, c} as follows: letters from the set {a, b} are only used in pairs of at most one, and consist of either (a,b), (b,a) or (b,b). Next, replace each occurrence of a, b and c with a length k binary word such that 'a' has exactly two letters 1, 'b' contains no 0's and 'c' has exactly one letter 0 (empty words otherwise, respectively). Then T(n,k) gives the number of length n*k binary words resulting from this substitution. First column follows from the next definition.
In Kauffman's language, T(n,k) is the number of ways of splitting the crossings of the Pretzel knot shadow P(k, k, ..., k) having n tangles, of k half-twists respectively, such that the final diagram consists of two Jordan curves. This result can be achieved by assigning each tangle of the Pretzel knot a length k binary words in a way that letters 1 and 0 indicate the adequate choice for splitting the crossings.
Columns are linear recurrence sequences with signature (3*k, -3*k^2, k^3).

Examples

			Square array begins:
    1,  1,     1,     1,      1,       1,       1, ...
    0,  1,     2,     3,      4,       5,       6, ...
    1,  2,     7,    16,     29,      46,      67, ...
    0,  4,    26,    90,    220,     440,     774, ...
    0,  7,    88,   459,   1504,    3775,    7992, ...
    0, 11,   272,  2133,   9344,   29375,   74736, ...
    0, 16,   784,  9234,  54016,  212500,  649296, ...
    0, 22,  2144, 37908, 295936, 1456250, 5342112, ...
    ...
T(3,2) = 2^3 + 2^(3 - 2)*3*(3 - 1)*(2*(2 - 1) + 1)/2 = 26. The corresponding ternary words are abc, acb, cab, bac, bca, cba, bbc, bcb, cbb, ccc.  Next, let a = {00}, b = {11} and c = {01, 10}. The resulting binary words are
    abc: 001101, 001110;
    acb: 000111, 001011;
    cab: 010011, 100011;
    bac: 110001, 110010;
    bca: 110100, 111000;
    cba: 011100, 101100;
    bbc: 111101, 111110;
    bcb: 110111, 111011;
    cbb: 011111, 101111;
    ccc: 010101, 101010, 010110, 011001, 100101, 101001, 100110, 011010.
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Column 1 is column 2 of A300453.
Column 2 is column 2 of A300184.

Programs

  • Mathematica
    T[n_, k_] = If[k > 0, k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2, If[k == 0 && (n == 0 || n == 1), 1, 0]];
    Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 10}]//Flatten
  • Maxima
    t(n, k) := k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1)$
    u(n) := if n = 0 or n = 1 then 1 else 0$
    T(n, k) := if k = 0 then u(n) else t(n,k)$
    tabl(nn) := for n:0 thru 10 do print(makelist(T(n, k), k, 0, nn))$

Formula

T(n,k) = k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1), k > 0.
T(n,k) = (3*k)*T(n-1,k) - (3*k^2)*T(n-2,k) + (k^3)*T(n-3,k), n > 3.
T(n,1) = A152947(n+1).
T(n,2) = A300451(n).
T(2,n) = A130883(n).
G.f. for columns: (1 - 2*k*x + (1 - k + 2*k^2)*x^2 )/(1 - k*x)^3.
E.g.f. for columns: ((1 - k + k^2)*x^2 + 2)*exp(k*x)/2.

A342939 a(n) is the Skolem number of the triangular grid graph T_n.

Original entry on oeis.org

1, 2, 5, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379, 1432, 1486
Offset: 1

Views

Author

Stefano Spezia, Mar 30 2021

Keywords

Comments

For the meaning of Skolem number of a graph, see Definitions 1.4 and 1.5 in Carrigan and Green.

Crossrefs

For n > 1, 3*A002061(n) gives the Skolem number of the hexagonal grid graph H_n.

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{1,2,5,7,11,16},55]

Formula

O.g.f.: x*(1 - x + 2*x^2 - 3*x^3 + 3*x^4 - x^5)/(1 - x)^3.
E.g.f.: exp(x)*(2 + x^2)/2 - 1 + x^3/6.
a(n) = 3*a(n-1) - 3*a(n-2) - a(n-3) for n > 6.
Except for a(3) = 5:
a(n) = 1 + n*(n - 1)/2 (see Theorem 2.5 in Carrigan and Green).
a(n) = 1 + A161680(n).
a(n) = A152947(n-1).

A240168 T(n,k) is the number of unlabeled graphs of n vertices and k edges that have endpoints, where an endpoint is a vertex with degree 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 5, 4, 2, 1, 1, 2, 4, 8, 13, 15, 16, 11, 5, 2, 1, 1, 2, 4, 9, 19, 35, 55, 75, 83, 72, 51, 29, 13, 5, 2, 1, 1, 2, 4, 10, 22, 50, 105, 196, 338, 511, 649, 695, 627, 473, 304, 172, 83, 35, 14, 5, 2, 1
Offset: 1

Views

Author

Chai Wah Wu, Aug 02 2014

Keywords

Comments

The length of the rows are 1,1,2,4,7,11,16,22,...: (n-1)*(n-2)/2 + 1 = A152947(n).
T(n,k) = 0 if k > (n-1)*(n-2)/2 + 1. (Cf. A245796)

Examples

			First few rows of irregular triangle are:
..0
..1
..1....1
..1....2....2....1
..1....2....3....5....4....2....1
..1....2....4....8...13...15...16...11....5....2....1
..1....2....4....9...19...35...55...75...83...72...51...29...13....5....2....1
...
		

Crossrefs

Cf. A245796. Sum of n-th row is equal to A141580(n).

A282283 Recursive 2-parameter sequence allowing calculation of the Euler Totient function.

Original entry on oeis.org

0, 1, -1, 1, 2, -4, 2, -4, 10, -6, -2, 2, 6, -16, 10, 4, -6, 8, -10, 4, -10, 28, -18, -8, 10, -10, 10, -2, 8, -10, 0, 2, 12, -34, 22, 10, -12, 12, -22, 30, -30, 6, 10, -10, 8, 0, 6, -14, 6, -18, 52, -34, -16, 18, -18, 34, -36, 20, 10, -6, -2, 4, -28, 18, 8
Offset: 0

Views

Author

Gevorg Hmayakyan, Feb 11 2017

Keywords

Comments

The a(n,m) forms a table where each row has (n*(n-3)+4)/2 = A152947(n) elements.
The index of the first row is n=1 and the index of the first column is m=0.
The right diagonal a(n, A152947(n)) = A000010(n), Euler Totient function.

Examples

			The first few rows are:
0, 1;
-1, 1;
2, -4, 2;
-4, 10, -6, -2, 2;
6, -16, 10, 4, -6, 8, -10, 4;
-10, 28, -18, -8, 10, -10, 10, -2, 8, -10, 0, 2;
12, -34, 22, 10, -12, 12, -22, 30, -30, 6, 10, -10, 8, 0, 6, -14, 6;
		

Crossrefs

Programs

  • Mathematica
    U[n_, m_] := U[n, m] = If[n > 1, U[n - 1, n*(n - 1)/2 - m]*(-1)^n - U[n - 1, m], 0]
    U[1, m_] := U[1, m] = If[m == 0, 1, 0]
    Q[n_, m_] := U[n, m - 2] - 2*U[n, m - 1] + U[n, m]
    nu[n_]:=(n-1)*n/2+2-n
    a[n_, m_] := a[n, m] = If[(m < 0) || (nu[n] < m), 0, a[n - 1, m - n + 1] - a[n - 1, m] - a[n - 1, nu[n - 1]]*Q[n - 1, m]]
    a[1, m_] := a[1, m] = If[m == 1, 1, 0]
    Table[Table[a[n, m], {m, 0, nu[n]}], {n, 1, 20}]
    Table[a[n, nu[n]], {n, 1, 50}]

Formula

nu(n) = (n*(n-3)+4)/2
Q(n,m) = 2*A231599(n,m-1)-A231599(n,m-2)-A231599(n,m)
a(n, m) = a(n - 1, m - n + 1) - a(n - 1, m) - a(n - 1, nu(n - 1))*Q(n - 1, m) if (m < 0) or (nu(n) < m)
a(1,m)=1 if m=1 and 0 otherwise.
a(n,nu(n))= A000010(n)

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.

A330794 Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 1, -3, 1, 1, 4, 2, -4, 1, -1, -7, 10, 4, -5, 1, 1, -14, -25, 16, 7, -6, 1, -1, 65, -21, -55, 21, 11, -7, 1, 1, -24, 196, -8, -98, 24, 16, -8, 1, -1, -367, -204, 400, 42, -154, 24, 22, -9, 1, 1, 774, -963, -688, 666, 148, -222, 20, 29, -10, 1
Offset: 0

Views

Author

Peter Luschny, Jan 03 2020

Keywords

Comments

The inverse matrix of the Riordan square (cf. A321620) generated by (1 - 2*x^2)/((1 + x)*(1 - 2*x)).

Examples

			Triangle starts:
[0]   1;
[1]  -1,    1;
[2]   1,   -2,    1;
[3]  -1,    1,   -3,    1;
[4]   1,    4,    2,   -4,    1;
[5]  -1,   -7,   10,    4,   -5,    1;
[6]   1,  -14,  -25,   16,    7,   -6,    1;
[7]  -1,   65,  -21,  -55,   21,   11,   -7,    1;
[8]   1,  -24,  196,   -8,  -98,   24,   16,   -8,    1;
[9]  -1, -367, -204,  400,   42, -154,   24,   22,   -9,    1;
		

Crossrefs

Programs

  • Mathematica
    m=30;
    A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x,0,m}, {t,0,m}], t], x];
    M:= M= Table[If[k<=n, A322942[[n+1,k+1]], 0], {n,0,m}, {k,0,m}];
    g:= g= Inverse[M];
    A330794[n_, k_]:= g[[n+1,k+1]];
    Table[A330794[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
  • Sage
    # uses[riordan_array from A256893]
    Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1))
    riordan_array(Jacobsthal, Jacobsthal, 10).inverse()

Formula

From G. C. Greubel, Sep 15 2023: (Start)
T(n, 0) = (-1)^n.
T(n, n) = 1.
T(n, n-1) = -n.
T(n, n-2) = A152947(n-1). (End)
Previous Showing 21-30 of 31 results. Next