cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A227847 Number of tuples (x_1, x_2, ..., x_n) with 1 <= x_1 <= x_2 <= ... <= x_n such that Sum_{i=1..n} x_i^3 = (Sum_{i=1..n} x_i)^2 and Sum_{i=1..n-1} x_i^3 + (x_n-1)^3 + (x_n+1)^3 = (Sum_{i=1..n-1} x_i + 2x_n)^2.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 6, 10, 31, 77, 206, 568, 1704, 5037, 15554
Offset: 1

Views

Author

Jimmy Zotos, Aug 01 2013

Keywords

Comments

An n-tuple meeting the first condition is called an n-SCESS ("sum of cubes equals square of sum").
In other words, a(n) is the number of tuples (x_1, x_2, ..., x_n) satisfying SCESS such that (x_1, x_2, ..., x_{n-1}, x_n - 1, x_n + 1) also satisfies SCESS. - Max Alekseyev, Mar 04 2025
x_1 + x_2 + ... + x_{n-1} = A152948(x_n). - Balarka Sen, Aug 01 2013

Examples

			a(3) = 1 since the only 3-SCESS is (1, 2, 3) for which the corresponding ordered tuple (1, 2, 2, 4) satisfy the SCESS property. (See Mason et al.)
a(5) = 2 since the only 5-SCESS are (1, 2, 2, 3, 5) and (3, 3, 3, 3, 6) for which the corresponding ordered tuples (1, 2, 2, 3, 4, 6) and (3, 3, 3, 3, 5, 7) satisfy the SCESS property.
a(8) = 6 since the only 8-SCESS are (1, 1, 2, 4, 5, 5, 5, 8), (1, 2, 2, 3, 4, 5, 6, 8), (2, 2, 4, 4, 6, 6, 6, 9), (2, 6, 6, 6, 6, 6, 6, 10), (3, 3, 3, 3, 5, 6, 7, 9) and (3, 5, 5, 5, 6, 7, 7, 10) for which the corresponding ordered tuples (1, 1, 2, 4, 5, 5, 5, 7, 9), (1, 2, 2, 3, 4, 5, 6, 7, 9), (2, 2, 4, 4, 6, 6, 6, 8, 10), (2, 6, 6, 6, 6, 6, 6, 9, 11), (3, 3, 3, 3, 5, 6, 7, 8, 10) and (3, 5, 5, 5, 6, 7, 7, 9, 11) satisfy the SCESS property.
		

Crossrefs

Programs

  • PARI
    a(n)=my(v=vector(n, i, 1), N=n^(4/3), k); while(v[#v]N, for(i=2, N, if(v[i]Balarka Sen, Aug 01 2013 */

Formula

A001055(n) <= a(n) <= A158649(n). - Balarka Sen, Aug 01 2013

Extensions

a(11)-a(15) from Balarka Sen, Aug 01 2013
a(16) from Balarka Sen, Aug 11 2013
Definition corrected by Max Alekseyev, Mar 04 2025

A236267 a(n) = 8*n^2 + 3*n + 1.

Original entry on oeis.org

1, 12, 39, 82, 141, 216, 307, 414, 537, 676, 831, 1002, 1189, 1392, 1611, 1846, 2097, 2364, 2647, 2946, 3261, 3592, 3939, 4302, 4681, 5076, 5487, 5914, 6357, 6816, 7291, 7782, 8289, 8812, 9351, 9906, 10477, 11064, 11667, 12286, 12921, 13572, 14239, 14922, 15621, 16336
Offset: 0

Views

Author

Vladimir Shevelev, Jan 21 2014

Keywords

Comments

Positions a(n) of hexagonal numbers such that h(a(n)) = h(a(n)-1) + h(4*n+1), where h = A000384.
First bisection of A057029. The sequence contains infinitely many squares: 1, 676, 779689, 899760016, ... [Bruno Berselli, Jan 24 2014]

Examples

			For n=5, A000384(a(5)) = 93096 = A000384(a(5)-1) + A000384(4*5+1) = 92235 + 861.
		

Crossrefs

Programs

  • Magma
    [8*n^2+3*n+1: n in [0..50]]; // Bruno Berselli, Jan 24 2014
  • Mathematica
    Table[8 n^2 + 3 n + 1, {n, 0, 50}] (* Bruno Berselli, Jan 24 2014 *)
    LinearRecurrence[{3,-3,1},{1,12,39},50] (* Harvey P. Dale, May 26 2019 *)
  • PARI
    Vec(-(6*x^2+9*x+1)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014
    

Formula

From Colin Barker, Jan 21 2014: (Start)
G.f.: -(6*x^2 + 9*x + 1)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(1 + 11*x + 8*x^2). - Elmo R. Oliveira, Oct 19 2024

Extensions

More terms from Colin Barker, Jan 21 2014
a(44)-a(45) from Elmo R. Oliveira, Oct 19 2024

A294070 a(n) = (1/4)*(n^2 - 2*n)^2 + (9/4)*(n^2 - 2*n) + 6.

Original entry on oeis.org

4, 6, 15, 40, 96, 204, 391, 690, 1140, 1786, 2679, 3876, 5440, 7440, 9951, 13054, 16836, 21390, 26815, 33216, 40704, 49396, 59415, 70890, 83956, 98754, 115431, 134140, 155040, 178296, 204079, 232566, 263940, 298390, 336111, 377304, 422176, 470940, 523815
Offset: 1

Views

Author

Jan Lakota Nono, Aug 14 2018

Keywords

Examples

			2*2, 2*3, 3*5, 5*8, 8*12, 12*17, 17*23, 23*30, 30*38, ...
		

Crossrefs

Programs

  • GAP
    List([1..40],n->(n^2-3*n+6)*(n^2-n+4)/4); # Muniru A Asiru, Aug 16 2018
    
  • Magma
    [(n^2-3*n+6)*(n^2-n+4)/4: n in [1..40]]; // Vincenzo Librandi, Aug 30 2018
    
  • Maple
    b:=n->(n^2-3*n+6)/2: seq(b(n)*b(n+1),n=1..40); # Muniru A Asiru, Aug 16 2018
  • Mathematica
    Times@@@Partition[Array[(#^2 -3# +6)/2 &, 40], 2, 1] (* Michael De Vlieger, Sep 24 2018 *)
    LinearRecurrence[{5,-10,10,-5,1}, {4,6,15,40,96}, 40] (* G. C. Greubel, Feb 10 2019 *)
  • PARI
    Vec(x*(4 - 14*x + 25*x^2 - 15*x^3 + 6*x^4)/(1-x)^5 + O(x^40)) \\ Colin Barker, Nov 26 2018
    
  • Sage
    [(n^2-3*n+6)*(n^2-n+4)/4 for n in (1..40)] # G. C. Greubel, Feb 10 2019

Formula

a(n) = A152948(n) * A152948(n+1).
From Muniru A Asiru, Aug 16 2018: (Start)
a(n) = (n^2 - 3*n + 6)*(n^2 - n + 4)/4.
a(n) = A152948(n)*A027689(n-1)/2. (End)
a(n) = A266883(A061925(n-1)). - Bruno Berselli, Aug 30 2018
From Colin Barker, Nov 26 2018: (Start)
G.f.: x*(4 - 14*x + 25*x^2 - 15*x^3 + 6*x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
a(n) = (24 - 18*n + 13*n^2 - 4*n^3 + n^4)/4. (End)
E.g.f.: (1/4)*exp(x)*(16 + 8*x + 14*x^2 + 6*x^3 + x^4). - Stefano Spezia, Nov 30 2018

A318054 a(n) = n*(n + 1)*(n^2 + n + 22)/24.

Original entry on oeis.org

0, 2, 7, 17, 35, 65, 112, 182, 282, 420, 605, 847, 1157, 1547, 2030, 2620, 3332, 4182, 5187, 6365, 7735, 9317, 11132, 13202, 15550, 18200, 21177, 24507, 28217, 32335, 36890, 41912, 47432, 53482, 60095, 67305, 75147, 83657, 92872, 102830, 113570, 125132, 137557
Offset: 0

Views

Author

Luce ETIENNE, Aug 14 2018

Keywords

Examples

			a(1) = 2; a(2)= 5+2 = 7; a(3) = 10+5+2 = 17; a(4) = 18+10+5+2 = 35; a(5) = 30+18+10+5+2 = 65; a(6) = 47+30+18+10+5+2 = 112.
		

Crossrefs

Partial sums of A177787.

Programs

  • GAP
    List([0..30],n->n*(n+1)*(n^2+n+22)/24); # Muniru A Asiru, Aug 15 2018
    
  • Maple
    seq(coeff(series(x*(2*x^2-3*x+2)/(1-x)^5, x,n+1),x,n),n=0..30); # Muniru A Asiru, Aug 15 2018
  • PARI
    a(n) = n*(n+1)*(n^2+n+22)/24; \\ Michel Marcus, Aug 17 2018

Formula

G.f.: x*(2*x^2-3*x+2)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (1/6)*Sum_{i=1..n} (n-i)*((n-i)^2+11), for n >= 1.

A255315 Lower triangular matrix describing the shape of a half hyperbola in the Dirichlet divisor problem.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, May 31 2015

Keywords

Comments

The sum of terms of row n is n. Length of row n is n.
From Mats Granvik, Feb 21 2016: (Start)
A006218(n) = (n^2 - ((2*Sum_{kk=1..n} Sum_{k=1..kk} T(n,k)) - n)) + 2*n - round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n))).
A006218(n) = -((n^2 - ((2*Sum_{kk=1..n} Sum_{k=1..kk} T(n,n-k+1)) - n)) - 2*n + round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n)))).
(End)
From Mats Granvik, May 28 2017: (Start)
A006218(n) = (n^2 - (2*(Sum_{k=1..n} T(n, k)*(n - k + 1)) - n)) + 2*n - round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n))).
A006218(n) = -((n^2 - (2*(Sum_{k=1..n} T(n, n - k + 1)*(n - k + 1)) - n)) - 2*n + round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n)))).
(End)
From Mats Granvik, Sep 07 2017: (Start)
It appears that:
The number of 0's in row n is equal to the number of 2's in row n and their number is given by A000196(n) - 1.
The number of 1's in column k is given by A152948(k+2).
The number of 2's in column k is given by A000096(k-1).
The row index of the last nonzero entry in column k is given by A005563(k).
(End)
From Mats Granvik, Oct 06 2018: (Start)
The smallest k such that T(n,k)=2 is given by A079643(n) = floor(n/floor(sqrt(n))).
This gives the lower bound: A006218(n) >= A094761(n) + A079643(n)*2*(A000196(n)-1).
<=> A006218(n) >= 2*n - (floor(sqrt(n)))^2 + floor(n/floor(sqrt(n)))*2*floor(sqrt(n)-1).
The average of k:s such that T(n,k)=2, for n>3 is given by:
b(n) = Sum_{k=1..n} (k*floor(abs(T(n, k)-1/2)))/floor(sqrt(n)-1).
This gives A006218(n) = 2*n - (floor(sqrt(n)))^2 + b(n)*2*floor(sqrt(n)-1) = 2*n - (floor(sqrt(n)))^2 + (Sum_{k=1..n} (k*floor(abs(T(n, k)-1/2))))*2, for n>3.
The largest k such that T(n,k)=2 is given by A004526(n) = floor(n/2).
This gives the upper bound: A006218(n) <= A094761(n) + A004526(n)*2*(A000196(n)-1).
<=> A006218(n) <= 2*n - (floor(sqrt(n)))^2 + floor(n/2)*2*floor(sqrt(n)-1).
The lower bound starts: 1, 3, 5, 8, 10, 14, 16, 20, 21, 23, ...
Sequence A006218 starts: 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, ...
The upper bound starts: 1, 3, 5, 8, 10, 14, 16, 20, 25, 31, ...
(End)

Examples

			1;
1, 1;
1, 1, 1;
0, 2, 1, 1;
0, 2, 1, 1, 1;
0, 1, 2, 1, 1, 1;
0, 1, 2, 1, 1, 1, 1;
0, 1, 1, 2, 1, 1, 1, 1;
0, 0, 2, 2, 1, 1, 1, 1, 1;
0, 0, 2, 1, 2, 1, 1, 1, 1, 1;
0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1;
0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Mathematica
    (* From Mats Granvik, Feb 21 2016: (Start) *)
    nn = 12;
    T = Table[
       Sum[Table[
         If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,
           If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,
           1, r}], {k, 1, r}], {r, 1, nn}];
    Flatten[T]
    A006218a = Table[(n^2 - (2*Sum[Sum[T[[n, k]], {k, 1, kk}], {kk, 1, n}] -
            n)) + 2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n,
         1, nn}];
    A006218b = -Table[(n^2 - (2*
              Sum[Sum[T[[n, n - k + 1]], {k, 1, kk}], {kk, 1, n}] - n)) -
         2*n + Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];
    (A006218b - A006218a);
    (* (End) *)
    (* From Mats Granvik, May 28 2017: (Start) *)
    nn = 12;
    T = Table[
       Sum[Table[
         If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,
           If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,
           1, r}], {k, 1, r}], {r, 1, nn}];
    Flatten[T]
    A006218a = Table[(n^2 - (2*Sum[T[[n, k]]*(n - k + 1), {k, 1, n}] - n)) +
        2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];
    A006218b = Table[-((n^2 - (2*Sum[T[[n, n - k + 1]]*(n - k + 1), {k, 1, n}] -
              n)) - 2*n +
          Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])]), {n, 1, nn}];
    (A006218b - A006218a);
    (* (End) *)

Formula

See Mathematica program.

A317849 Number of states of the Finite State Automaton Gn accepting the language of maximal (or minimal) lexicographic representatives of elements in the positive braid monoid An.

Original entry on oeis.org

1, 5, 18, 56, 161, 443, 1190, 3156, 8315, 21835, 57246, 149970, 392743, 1028351, 2692416, 7049018, 18454775, 48315461, 126491780, 331160070, 866988641, 2269806085, 5942429868, 15557483796, 40730021821, 106632581993, 279167724510, 730870591916, 1913444051645, 5009461563455
Offset: 1

Views

Author

Michel Marcus, Aug 09 2018

Keywords

Programs

  • GAP
    List([1..30],n->Sum([1..n],i->(Binomial(n+1-i,2)+1)*Fibonacci(2*i))); # Muniru A Asiru, Aug 09 2018
  • Magma
    [&+[(Binomial(n+1-k, 2)+1)*Fibonacci(2*k): k in [1..n]]: n in [1..30]]; // Vincenzo Librandi, Aug 09 2018
    
  • Mathematica
    Table[Sum[(Binomial[n + 1 - k, 2] + 1) Fibonacci[2 k], {k, n}], {n, 30}] (* Vincenzo Librandi, Aug 09 2018 *)
  • PARI
    a(n) = sum(i=1, n, (binomial(n+1-i, 2)+1)*fibonacci(2*i));
    

Formula

a(n) = Sum_{i=1..n} (binomial(n+1-i, 2)+1)*Fibonacci(2*i).
Conjecture: g.f. -x*(1-x+x^2) / ( (x^2-3*x+1)*(x-1)^3 ). a(n) = 2*A001519(n+1) -n*(n+1)/2 -2 = 2*A001519(n+1)-A152948(n+2). - R. J. Mathar, Aug 17 2018
Previous Showing 21-26 of 26 results.