cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A119881 Expansion of e.g.f. exp(3*x)*sech(x).

Original entry on oeis.org

1, 3, 8, 18, 32, 48, 128, 528, 512, -6912, 2048, 357888, 8192, -22351872, 32768, 1903822848, 131072, -209865080832, 524288, 29088886161408, 2097152, -4951498048929792, 8388608, 1015423886523629568, 33554432, -246921480190140874752, 134217728, 70251601603944228323328
Offset: 0

Views

Author

Paul Barry, May 26 2006

Keywords

Comments

Transform of 3^n under the matrix A119879.
Also the Swiss-Knife polynomials A153641 evaluated at x=3. - Peter Luschny, Nov 23 2012

Crossrefs

Programs

  • Magma
    EulerPoly:= func< n,x | (&+[ (&+[ (-1)^j*Binomial(k,j)*(x+j)^n : j in [0..k]])/2^k: k in [0..n]]) >;
    A119881:= func< n| (-2)^n*EulerPoly(n,-1) >;
    [A119881(n): n in [0..40]]; // G. C. Greubel, Jun 07 2023
  • Maple
    a := proc(n) add(binomial(n,k)*bernoulli(k,1)*2^(n+k)/(n-k+1),k=0..n) end: # Peter Luschny, Dec 14 2008
    a := n -> 2^n*abs(euler(n,-1)):  # Peter Luschny, Jan 25 2009
    P := proc(n,x) option remember; if n = 0 then 1 else
       (n*x+2*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
       expand(%) fi end:
    A119881 := n -> subs(x=-1,P(n,x)):
    seq(A119881(n), n=0..27);  # Peter Luschny, Mar 07 2014
  • Mathematica
    Table[2^(n+1) (Zeta[-n] (2^(n+1)-1)+1), {n,0,27}] (* Peter Luschny, Jul 16 2013 *)
    Range[0, 30]! CoefficientList[Series[Exp[3 x] Sech[x], {x, 0, 30}], x] (* Vincenzo Librandi, Mar 08 2014 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(3*x)/cosh(x))) \\ Joerg Arndt, Apr 20 2013
    
  • Sage
    def skp(n, x):
        A = lambda k: 0 if (k+1)%4 == 0 else (-1)^((k+1)//4)*2^(-(k//2))
        return add(A(k)*add((-1)^v*binomial(k,v)*(v+x+1)^n for v in (0..k)) for k in (0..n))
    A119881 = lambda n: skp(n,3)
    [A119881(n) for n in (0..27)]  # Peter Luschny, Nov 23 2012
    

Formula

a(n) = Sum_{k=0..n} A119879(n,k)*3^k.
a(n) = Sum_{k=0..n} binomial(n,k)*B(k,1)*2^(n+k)/(n-k+1). Here B(k,1) are the Bernoulli number A027641(k)/A027642(k) with the exception B(1,1)=1/2. - Peter Luschny, Dec 14 2008
a(n) = 2^n |E(n,-1)| where E(n,x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
The odd part of a(n) = numerator(Euler(n,2)/2) = 1, 3, 1, 9, 1, 3, 1, 33, 1, -27, 1, 699, ... (compare A143074). - Peter Luschny, Nov 23 2012
G.f.: 1/Q(0), where Q(k) = 1 - 2*x - x*(k+1)/(1+x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: 1/Q(0), where Q(k) = 1 - 4*x + x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 20 2013
a(n) = 2^(n+1)*(zeta[-n]*(2^(n+1)-1)+1). - Peter Luschny, Jul 16 2013
E.g.f.: 2/Q(0), where Q(k) = 1 + 2^k/( 1 - 2*x/( 2*x - 2^k*(k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2013
a(n) = 2^(n+1)*(1+(-1)^n*(2^(n+1)-1)*Bernoulli(n+1)/(n+1)). - Vladimir Reshetnikov, Oct 21 2015

A154341 E(n,k), an additive decomposition of the Euler number (triangle read by rows).

Original entry on oeis.org

1, 1, -1, 1, -3, 1, 1, -7, 6, 0, 1, -15, 25, 0, -6, 1, -31, 90, 0, -90, 30, 1, -63, 301, 0, -840, 630, -90, 1, -127, 966, 0, -6300, 7980, -2520, 0, 1, -255, 3025, 0, -41706, 79380, -41580, 0, 2520
Offset: 0

Views

Author

Peter Luschny, Jan 07 2009

Keywords

Comments

The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=0 these polynomials result in a decomposition of the Euler number A122045.

Examples

			Triangle begins:
  1,
  1,   -1,
  1,   -3,    1,
  1,   -7,    6, 0,
  1,  -15,   25, 0,     -6,
  1,  -31,   90, 0,    -90,    30,
  1,  -63,  301, 0,   -840,   630,    -90,
  1, -127,  966, 0,  -6300,  7980,  -2520,  0,
  1, -255, 3025, 0, -41706, 79380, -41580,  0, 2520,
  ...
		

Crossrefs

Programs

  • Maple
    E := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*c(k)*(v+1)^n,v=0..k) end: seq(print(seq(E(n,k),k=0..n)),n=0..8);
  • Mathematica
    c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; e[n_, k_] := Sum[(-1)^v*Binomial[k, v]*c[k]*(v+1)^n, {v, 0, k}]; Table[e[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)

Formula

Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
E(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*c(k)*(v+1)^n,
A122045(n) = Sum_{k=0..n} E(n,k).

A154342 T(n,k) an additive decomposition of the signed tangent number (triangle read by rows).

Original entry on oeis.org

1, 2, -1, 4, -5, 1, 8, -19, 9, 0, 16, -65, 55, 0, -6, 32, -211, 285, 0, -120, 30, 64, -665, 1351, 0, -1470, 810, -90, 128, -2059, 6069, 0, -14280, 13020, -3150, 0
Offset: 0

Views

Author

Peter Luschny, Jan 07 2009

Keywords

Comments

The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1 these polynomials result in a decomposition of the signed tangent numbers A009006.

Examples

			Triangle begins:
    1,
    2,    -1,
    4,    -5,    1,
    8,   -19,    9, 0,
   16,   -65,   55, 0,     -6,
   32,  -211,  285, 0,   -120,    30,
   64,  -665, 1351, 0,  -1470,   810,   -90,
  128, -2059, 6069, 0, -14280, 13020, -3150, 0,
  ...
		

Crossrefs

Programs

  • Maple
    T := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*c(k)*(v+2)^n,v=0..k) end: seq(print(seq(T(n,k),k=0..n)),n=0..8);
  • Mathematica
    c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; t[n_, k_] := Sum[(-1)^v*Binomial[k, v]*c[k]*(v+2)^n, {v, 0, k}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)

Formula

Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
T(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*c(k)*(v+2)^n.
A155585(n) = Sum_{k=0..n} T(n,k).

A154343 S(n,k) an additive decomposition of the Springer number (generalized Euler number), (triangle read by rows).

Original entry on oeis.org

1, 3, -2, 9, -16, 4, 27, -98, 60, 0, 81, -544, 616, 0, -96, 243, -2882, 5400, 0, -3360, 960, 729, -14896, 43564, 0, -72480, 46080, -5760, 2187, -75938, 334740, 0, -1246560, 1323840, -362880, 0, 6561, -384064, 2495056, 0, -18801216, 29675520
Offset: 0

Views

Author

Peter Luschny, Jan 07 2009

Keywords

Comments

The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1/2 and multiplied by 2^n these polynomials result in a decomposition of the Springer numbers A001586.

Examples

			Triangle begins:
  1,
  3,    -2,
  9,    -16,     4,
  27,   -98,     60,      0,
  81,   -544,    616,     0, -96,
  243,  -2882,   5400,    0, -3360,     960,
  729,  -14896,  43564,   0, -72480,    46080,    -5760,
  2187, -75938,  334740,  0, -1246560,  1323840,  -362880,   0,
  6561, -384064, 2495056, 0, -18801216, 29675520, -13386240, 0, 645120,
  ...
		

Crossrefs

Programs

  • Maple
    S := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*2^n*c(k)*(v+3/2)^n,v=0..k) end: seq(print(seq(S(n,k),k=0..n)),n=0..8);
  • Mathematica
    c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; s[n_, k_] := Sum[(-1)^v*Binomial[k, v]*2^n*c[k]*(v+3/2)^n, {v, 0, k}]; Table[s[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)

Formula

Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
S(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*2^n*c(k)*(v+3/2)^n.
A188458(n) = Sum_{k=0..n} S(n,k).

A154344 Triangle read by rows. G(n, k) an additive decomposition of 2^n*G(n), G(n) the Genocchi numbers.

Original entry on oeis.org

1, 0, -2, 0, -3, 3, 0, -4, 12, 0, 0, -5, 35, 0, -30, 0, -6, 90, 0, -360, 180, 0, -7, 217, 0, -2730, 3150, -630, 0, -8, 504, 0, -16800, 33600, -15120, 0, 0, -9, 1143, 0, -91854, 283500, -215460, 0, 22680, 0, -10, 2550, 0, -466200, 2085300, -2381400, 0, 907200, -226800
Offset: 0

Views

Author

Peter Luschny, Jan 07 2009

Keywords

Comments

The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=-1 multiplied by n+1 this results in a decomposition of 2^n times the Genocchi numbers A036968.

Examples

			Triangle begins:
  1,
  0, -2,
  0, -3,    3,
  0, -4,   12, 0,
  0, -5,   35, 0,    -30,
  0, -6,   90, 0,   -360,    180,
  0, -7,  217, 0,  -2730,   3150,    -630,
  0, -8,  504, 0, -16800,  33600,  -15120, 0,
  0, -9, 1143, 0, -91854, 283500, -215460, 0, 22680,
  ...
		

Crossrefs

Programs

  • Maple
    G := proc(n, k) local v, c; c := m -> if irem(m+1, 4) = 0 then 0 else 1/((-1)^iquo(m+1, 4)*2^iquo(m, 2)) fi; add((-1)^v*binomial(k, v)*(n+1)*c(k)*v^n, v=0..k) end: seq(print(seq(G(n, k), k=0..n)), n=0..8);
  • Mathematica
    g[n_, k_] := Module[{v, c, pow}, pow[a_, b_] := If[ a == 0 && b == 0, 1, a^b]; c[m_] := If[ Mod[m+1, 4] == 0 , 0 , 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; Sum[(-1)^v*Binomial[k, v]*(n+1)*c[k]*pow[v, n], {v, 0, k}]]; Table[g[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 23 2013, translated from Maple *)

Formula

Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
G(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*(n+1)*c(k)*v^n.
A036968(n) = (1/2^n)*Sum_{k=0..n} G(n,k).

A154345 B(n,k) an additive decomposition of (4^n-2^n)*B(n), B(n) the Bernoulli numbers (triangle read by rows).

Original entry on oeis.org

1, 4, -2, 12, -15, 3, 32, -76, 36, 0, 80, -325, 275, 0, -30, 192, -1266, 1710, 0, -720, 180, 448, -4655, 9457, 0, -10290, 5670, -630, 1024, -16472, 48552, 0, -114240, 104160, -25200, 0
Offset: 0

Views

Author

Peter Luschny, Jan 07 2009

Keywords

Comments

The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1 and multiplied by n this results in a decomposition of (4^n-2^n) times the Bernoulli numbers A027641/A027642 (for n>0 and B_1 = 1/2).

Examples

			Triangle begins:
  1,
  4,    -2,
  12,   -15,    3,
  32,   -76,    36,    0,
  80,   -325,   275,   0, -30,
  192,  -1266,  1710,  0, -720,    180,
  448,  -4655,  9457,  0, -10290,  5670,   -630,
  1024, -16472, 48552, 0, -114240, 104160, -25200, 0,
  ...
		

Crossrefs

Programs

  • Maple
    B := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*n*c(k)*(v+2)^(n-1),v=0..k) end: seq(print(seq(B(n,k),k=0..(n-1))),n=0..8);
  • Mathematica
    c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; b[n_, k_] := Sum[(-1)^v*Binomial[k, v]*n*c[k]*(v+2)^(n-1), {v, 0, k}]; Table[b[n, k], {n, 0, 8}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)

Formula

Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
B(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*n*c(k)*(v+2)^(n-1).
B(n) = (Sum_{k=0..n} B(n,k)) / (4^n-2^n).

A162590 Polynomials with e.g.f. exp(x*t)/csch(t), triangle of coefficients read by rows.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 1, 0, 3, 0, 0, 4, 0, 4, 0, 1, 0, 10, 0, 5, 0, 0, 6, 0, 20, 0, 6, 0, 1, 0, 21, 0, 35, 0, 7, 0, 0, 8, 0, 56, 0, 56, 0, 8, 0, 1, 0, 36, 0, 126, 0, 84, 0, 9, 0, 0, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 1, 0, 55, 0, 330, 0, 462, 0, 165, 0, 11, 0, 0, 12, 0, 220, 0, 792, 0, 792, 0
Offset: 0

Views

Author

Peter Luschny, Jul 07 2009

Keywords

Comments

Comment from Peter Bala (Dec 06 2011): "Let P denote Pascal's triangle A070318 and put M = 1/2*(P-P^-1). M is A162590 (see also A131047). Then the first column of (I-t*M)^-1 (apart from the initial 1) lists the row polynomials for" A196776(n,k), which gives the number of ordered partitions of an n set into k odd-sized blocks. - Peter Luschny, Dec 06 2011
The n-th row of the triangle is formed by multiplying by 2^(n-1) the elements of the first row of the limit as k approaches infinity of the stochastic matrix P^(2k-1) where P is the stochastic matrix associated with the Ehrenfest model with n balls. The elements of a stochastic matrix P give the probability of arriving in a state j given the previous state i. In particular the sum of every row of the matrix must be 1, and so the sum of the terms in the n-th row of this triangle is 2^(n-1). Furthermore, by the properties of Markov chains, we can interpret P^(2k) as the (2k)-step transition matrix of the Ehrenfest model and its limit exists and it is again a stochastic matrix. The rows of the triangle divided by 2^(n-1) are the even rows (second, fourth, ...) and the odd rows (first, third, ...) of the limit matrix P^(2k). - Luca Onnis, Oct 29 2023

Examples

			Triangle begins:
  0
  1,  0
  0,  2,  0
  1,  0,  3,  0
  0,  4,  0,  4,  0
  1,  0, 10,  0,  5,  0
  0,  6,  0, 20,  0,  6,  0
  1,  0, 21,  0, 35,  0,  7,  0
  ...
  p[0](x) = 0;
  p[1](x) = 1
  p[2](x) = 2*x
  p[3](x) = 3*x^2 +  1
  p[4](x) = 4*x^3 +  4*x
  p[5](x) = 5*x^4 + 10*x^2 +  1
  p[6](x) = 6*x^5 + 20*x^3 +  6*x
  p[7](x) = 7*x^6 + 35*x^4 + 21*x^2 + 1
  p[8](x) = 8*x^7 + 56*x^5 + 56*x^3 + 8*x
.
Cf. the triangle of odd-numbered terms in rows of Pascal's triangle (A034867).
p[n] (k), n=0,1,...
k=0:  0, 1,  0,   1,    0,     1, ... A000035, (A059841)
k=1:  0, 1,  2,   4,    8,    16, ... A131577, (A000079)
k=2:  0, 1,  4,  13,   40,   121, ... A003462
k=3:  0, 1,  6,  28,  120,   496, ... A006516
k=4:  0, 1,  8,  49,  272,  1441, ... A005059
k=5:  0, 1, 10,  76,  520,  3376, ... A081199, (A016149)
k=6:  0, 1, 12, 109,  888,  6841, ... A081200, (A016161)
k=7:  0, 1, 14, 148, 1400, 12496, ... A081201, (A016170)
k=8:  0, 1, 16, 193, 2080, 21121, ... A081202, (A016178)
k=9:  0, 1, 18, 244, 2952, 33616, ... A081203, (A016186)
k=10: 0, 1, 20, 301, 4040, 51001, ... ......., (A016190)
.
p[n] (k), k=0,1,...
p[0]: 0,  0,   0,    0,    0,     0, ... A000004
p[1]: 1,  1,   1,    1,    1,     1, ... A000012
p[2]: 0,  2,   4,    6,    8,    10, ... A005843
p[3]: 1,  4,  13,   28,   49,    76, ... A056107
p[4]: 0,  8,  40,  120,  272,   520, ... A105374
p[5]: 1, 16, 121,  496, 1441,  3376, ...
p[6]: 0, 32, 364, 2016, 7448, 21280, ...
		

Crossrefs

Cf. A119467.

Programs

  • Maple
    # Polynomials: p_n(x)
    p := proc(n,x) local k;
    pow := (n,k) -> `if`(n=0 and k=0,1,n^k);
    add((k mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end;
    # Coefficients: a(n)
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)/csch(t), t,16),t,i),x,n), n=0..i)), i=0..8);
  • Mathematica
    p[n_, x_] := Sum[Binomial[n, 2*k-1]*x^(n-2*k+1), {k, 0, n+2}]; row[n_] := CoefficientList[p[n, x], x] // Append[#, 0]&; Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
    n = 15; "n-th row"
    mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}];
    mat[[1, 2]] = 1;
    mat[[n + 1, n]] = 1;
    For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ];
    For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n];
    mat // MatrixForm;
    P2 = Dot[mat, mat];
    R1 = Simplify[
      Eigenvectors[Transpose[P2]][[1]]/
       Total[Eigenvectors[Transpose[P2]][[1]]]]
    R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}]
    even = R1*2^(n - 1) (* Luca Onnis, Oct 29 2023 *)

Formula

p_n(x) = Sum_{k=0..n} (k mod 2)*binomial(n,k)*x^(n-k).
E.g.f.: exp(x*t)/csch(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2+1)*(t^3/3!) + ...
The 'co'-polynomials with generating function exp(x*t)*sech(t) are the Swiss-Knife polynomials (A153641).

A062393 a(n) = n^5 - (n-1)^5 + (n-2)^5 - ... +(-1)^n*0^5.

Original entry on oeis.org

0, 1, 31, 212, 812, 2313, 5463, 11344, 21424, 37625, 62375, 98676, 150156, 221137, 316687, 442688, 605888, 813969, 1075599, 1400500, 1799500, 2284601, 2869031, 3567312, 4395312, 5370313, 6511063, 7837844, 9372524, 11138625, 13161375
Offset: 0

Views

Author

Henry Bottomley, Jun 21 2001

Keywords

Comments

The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-6)(P(5,1)-(-1)^k P(5,2k+1))|. - Peter Luschny, Jul 12 2009

Crossrefs

Cf. A000539, A000584. A062392 for 4th powers, A152725 for 6th powers.

Programs

  • Maple
    a := n -> (1-(-1)^n+n^2*(n^2*(2*n+5)-5))/4; # Peter Luschny, Jul 12 2009
  • Mathematica
    k=0;lst={k};Do[k=n^5-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[Total[(Times@@@Partition[Riffle[Range[n,0,-1],{1,-1},{2,-1,2}],2])^5],{n,0,30}] (* or *) LinearRecurrence[ {5,-9,5,5,-9,5,-1},{0,1,31,212,812,2313,5463},40] (* Harvey P. Dale, Feb 01 2013 *)
  • PARI
    { a=0; for (n=0, 1000, write("b062393.txt", n, " ", a=n^5 - a) ) } \\ Harry J. Smith, Aug 07 2009

Formula

a(n) = (2*n^5 + 5*n^4 - 5*n^2 + 1 - (-1)^n)/4 = n^5 - a(n-1).
G.f.: x*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1)/((x-1)^6*(x+1)). - Colin Barker, Sep 19 2012
a(0)=0, a(1)=1, a(2)=31, a(3)=212, a(4)=812, a(5)=2313, a(6)=5463, a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7). - Harvey P. Dale, Feb 01 2013

A000810 Expansion of e.g.f. (sin x + cos x)/cos 3x.

Original entry on oeis.org

1, 1, 8, 26, 352, 1936, 38528, 297296, 7869952, 78098176, 2583554048, 31336418816, 1243925143552, 17831101321216, 825787662368768, 13658417358350336, 722906928498737152, 13551022195053101056
Offset: 0

Views

Author

Keywords

Crossrefs

(-1)^(n*(n-1)/2)*a(n) gives the alternating row sums of A225118. - Wolfdieter Lang, Jul 12 2017

Programs

  • Mathematica
    CoefficientList[Series[(Sin[x]+Cos[x])/Cos[3*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 25 2013 *)
    Table[Abs[EulerE[n, 1/3]] 6^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 21 2015 *)
  • PARI
    x='x+O('x^66); v=Vec(serlaplace( (sin(x)+cos(x)) / cos(3*x) ) ) \\ Joerg Arndt, Apr 27 2013
  • Sage
    from mpmath import mp, lerchphi
    mp.dps = 32; mp.pretty = True
    def A000810(n): return abs(3^n*2^(n+1)*lerchphi(-1,-n,1/3))
    [int(A000810(n)) for n in (0..17)]  # Peter Luschny, Apr 27 2013
    

Formula

a(2n) = A000436(n).
(-1)^n*a(2n+1)=1-sum_{i=0,1,...,n-1} (-1)^i*binomial(2n+1,2i+1)*3^(2n-2i)*a(2i+1). - R. J. Mathar, Nov 19 2006
a(n) = | 3^n*2^(n+1)*lerchphi(-1,-n,1/3) |. - Peter Luschny, Apr 27 2013
a(n) ~ n!*2^(n+1)*3^(n+1/2)/Pi^(n+1) if n is even and a(n) ~ n!*2^(n+1)*3^n/Pi^(n+1) if n is odd. - Vaclav Kotesovec, Jun 25 2013
a(n) = (-1)^floor(n/2)*3^n*skp(n, 1/3), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014

A161722 Generalized Bernoulli numbers B_n(X,0), X a Dirichlet character modulus 8.

Original entry on oeis.org

0, 2, -44, 2166, -196888, 28730410, -6148123332, 1813990148894, -705775346640176, 350112935442888018, -215681051222514096220, 161537815119247080938182, -144555133640020128085896264, 152323571317104251881943249786
Offset: 0

Views

Author

Peter Bala, Jun 18 2009

Keywords

Comments

Let X be a periodic arithmetical function with period m. The generalized Bernoulli polynomials B_n(X,x) attached to X are defined by means of the generating function
(1)... t*exp(t*x)/(exp(m*t)-1) * Sum_{r = 0..m-1} X(r)*exp(r*t) = Sum_{n >= 0} B_n(X,x)*t^n/n!.
The values B_n(X,0) are generalizations of the Bernoulli numbers (case X = 1). For the theory and properties of these polynomials and numbers see [Cohen, Section 9.4]. In the present case, X is chosen to be the Dirichlet character modulus 8 given by
(2)... X(8*n+1) = X(8*n+7) = 1; X(8*n+3) = X(8*n+5) = -1; X(2*n) = 0.
The odd-indexed generalized Bernoulli numbers B_(2*n+1)(X,0) vanish. The current sequence lists the even-indexed values B_(2*n)(X,0).
The coefficients of the generalized Bernoulli polynomials B_n(X,x) are listed in A151751.

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag.

Crossrefs

Programs

  • Maple
    G := x*sinh(x)/cosh(2*x): ser := series(G, x, 30):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..14); # Peter Luschny, Nov 26 2020
    # After an observation of F. Chapoton in A117442:
    A161722 := proc(n) 4^n*add(binomial(2*n, k)*euler(k)*((x+1)/2)^(2*n-k), k=0..2*n);
    coeff(%, x, 1) end: seq(A161722(n), n=0..13); # Peter Luschny, Nov 26 2020
  • Mathematica
    terms = 13;
    (CoefficientList[x(Sinh[x]/Cosh[2x]) + O[x]^(2terms+3), x] Range[0, 2terms+2]!)[[ ;; ;; 2]] (* Jean-François Alcover, Nov 16 2020 *)

Formula

(1)... a(n) = (-1)^(n+1)*2*n*A000464(n-1).
The sequence of generalized Bernoulli numbers
(2)... [B_n(X,0)]n>=2 = [2,0,-44,0,2166,0,...]
has the e.g.f.
(3)... t*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1),
which simplifies to
(4)... t*sinh(t)/cosh(2*t) = 2*t^2/2! - 44*t^4/4! + ....
Hence
(5)... B_(2*n)(X,0) = (-1)^(n+1)*2*n*A000464(n-1) and B_(2*n+1)(X,0) = 0.
a(n) = (-1/2)*16^n*n*euler(2*n-1, 1/4) for n >= 1 after a formula of Peter Bala in A000464. - Peter Luschny, Nov 26 2020

Extensions

Cross-reference corrected by Peter Bala, Jun 22 2009
Offset set to 0 and a(0) = 0 prepended by Peter Luschny, Nov 26 2020
Previous Showing 21-30 of 52 results. Next