A114197
A Pascal-Fibonacci triangle.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 31, 21, 6, 1, 1, 7, 31, 61, 61, 31, 7, 1, 1, 8, 43, 106, 142, 106, 43, 8, 1, 1, 9, 57, 169, 286, 286, 169, 57, 9, 1, 1, 10, 73, 253, 520, 659, 520, 253, 73, 10, 1
Offset: 0
Triangle begins
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 13, 13, 5, 1;
1, 6, 21, 31, 21, 6, 1;
1, 7, 31, 61, 61, 31, 7, 1;
1, 8, 43, 106, 142, 106, 43, 8, 1;
A109906
A triangle based on A000045 and Pascal's triangle: T(n,m) = Fibonacci(n-m+1) * Fibonacci(m+1) * binomial(n,m).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 6, 6, 3, 5, 12, 24, 12, 5, 8, 25, 60, 60, 25, 8, 13, 48, 150, 180, 150, 48, 13, 21, 91, 336, 525, 525, 336, 91, 21, 34, 168, 728, 1344, 1750, 1344, 728, 168, 34, 55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55, 89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
2, 2, 2;
3, 6, 6, 3;
5, 12, 24, 12, 5;
8, 25, 60, 60, 25, 8;
13, 48, 150, 180, 150, 48, 13;
21, 91, 336, 525, 525, 336, 91, 21;
34, 168, 728, 1344, 1750, 1344, 728, 168, 34;
55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55;
89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89;
...
-
a109906 n k = a109906_tabl !! n !! k
a109906_row n = a109906_tabl !! n
a109906_tabl = zipWith (zipWith (*)) a058071_tabl a007318_tabl
-- Reinhard Zumkeller, Aug 15 2013
-
f:= n-> combinat[fibonacci](n+1):
T:= (n, k)-> binomial(n, k)*f(k)*f(n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 26 2023
-
Clear[t, n, m] t[n_, m_] := Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
A162849
Pairs of numbers that add up to the 'backward decimal expansion' of fraction 1/109 and whose difference is the 'backward decimal expansion' of fraction 1/89.
Original entry on oeis.org
0, 1, 10, 101, 2010, 10201, 303010, 1040201, 40703010, 107050201, 5140803010, 11112050201, 625200803010, 1162613050201, 74146210803010, 122513313050201, 8639754210803010, 12992793413050201, 993903355210803010
Offset: 1
In pairs:
0, 1;
10, 101;
2010, 10201;
303010, 1040201;
40703010, 107050201;
5140803010, 11112050201;
A165155
a(n) = 100*a(n-1) + 11^(n-1) for n>0, a(0)=0.
Original entry on oeis.org
0, 1, 111, 11221, 1123431, 112357741, 11235935151, 1123595286661, 112359548153271, 11235955029685981, 1123595505326545791, 112359550558592003701, 11235955056144512040711, 1123595505617589632447821, 112359550561793485956926031, 11235955056179728345526186341
Offset: 0
From _Mark Dols_, Jan 28 2010: (Start)
As triangle:
........... 1
......... 1 1 1
....... 1 1 2 2 1
..... 1 1 2 3 4 3 1
... 1 1 2 3 5 7 7 4 1
. 1 1 2 3 5 9 3 5 1 5 1
1 1 2 3 5 9 5 2 8 6 6 6 1
(Mirrored version of A162741) (End)
-
[(1/89)*(100^n-11^n): n in [0..40]] // Vincenzo Librandi, Dec 05 2010
-
RecurrenceTable[{a[0]==0,a[n]==100a[n-1]+11^(n-1)},a,{n,40}] (* Harvey P. Dale, Feb 20 2016 *)
-
[(10^(2*n) - 11^n)/89 for n in range(41)] # G. C. Greubel, Feb 09 2023
Original entry on oeis.org
0, 1, 101, 10201, 1020401, 102050701, 10205121101, 1020513261601, 102051333512201, 10205133479922901, 1020513348977553701, 102051334912467474601, 10205133491373712765601, 1020513349139081705516701, 102051334913924160974827901, 10205133491392617410795809201
Offset: 0
-
Table[99 100^n/9701 - 11^n/178 - (-9)^n/218, {n, 0, 20}] (* Bruno Berselli, Oct 02 2015 *)
-
concat(0, Vec(-x*(x-1)/((9*x+1)*(11*x-1)*(100*x-1)) + O(x^30))) \\ Colin Barker, Oct 02 2015
-
[(-89*(-9)^n - 109*11^n + 198*10^(2*n))/19402 for n in (0..50)] # G. C. Greubel, Apr 24 2022
Original entry on oeis.org
0, 0, 10, 1020, 103030, 10307040, 1030814050, 103082025060, 10308214641070, 1030821549763080, 103082156348992090, 10308215646124529100, 1030821564770799275110, 103082156478507926931120, 10308215647869324982098130, 1030821564787110934730377140
Offset: 0
-
Table[10^(2 n + 1)/9701 - 11^n/178 + (-9)^n/218, {n, 0, 20}] (* Bruno Berselli, Oct 02 2015 *)
LinearRecurrence[{102,-101,-9900},{0,0,10},20] (* Harvey P. Dale, Aug 17 2021 *)
-
concat([0,0], Vec(10*x^2/((9*x+1)*(11*x-1)*(100*x-1)) + O(x^30))) \\ Colin Barker, Oct 02 2015
-
[(89*(-9)^n + 2*10^(2*n+1) - 109*11^n)/19402 for n in (0..50)] # G. C. Greubel, Apr 24 2022
A208245
Triangle read by rows: a(n,k) = a(n-2,k) + a(n-2,k-1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 6, 5, 3, 2, 1, 1, 1, 4, 7, 7, 5, 3, 2, 1, 1, 1, 5, 10, 11, 8, 5, 3, 2, 1, 1, 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 1, 6, 15, 21, 19, 13, 8, 5, 3, 2, 1, 1, 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1
Offset: 1
The first 13 rows are (as above) where n is the row index:
1
1, 1
1, 1, 1
1, 2, 1, 1
1, 2, 2, 1, 1
1, 3, 3, 2, 1, 1
1, 3, 4, 3, 2, 1, 1
1, 4, 6, 5, 3, 2, 1, 1
1, 4, 7, 7, 5, 3, 2, 1, 1
1, 5, 10, 11, 8, 5, 3, 2, 1, 1
1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1
1, 6, 15, 21, 19, 13, 8, 5, 3, 2, 1, 1
1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1,
-
a208245 n k = a208245_tabl !! (n-1) !! (k-1)
a208245_row n = a208245_tabl !! (n-1)
a208245_tabl = map fst $ iterate f ([1], [1, 1]) where
f (us, vs) = (vs, zipWith (+) ([0] ++ us ++ [0]) (us ++ [0, 1]))
-- Reinhard Zumkeller, Jul 28 2013
A261507
Fibonacci-numbered rows of Pascal's triangle. Triangle read by rows: T(n,k)= binomial(Fibonacci(n), k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 10, 10, 5, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, 293930, 352716, 352716, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1
Offset: 0
1,
1, 1,
1, 1,
1, 2, 1,
1, 3, 3, 1,
1, 5, 10, 10, 5, 1,
1, 8, 28, 56, 70, 56, 28, 8, 1,
1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1
-
Table[Binomial[Fibonacci[n], k], {n, 0, 8}, {k, 0, Fibonacci[n]}]//Flatten (* Jean-François Alcover, Nov 12 2015*)
-
v = vector(101,j,fibonacci(j)); i=0; n=0; while(n<100, for(k=0, n, print1(binomial(n, k), ", ","")); print(); i=i+1; n=v[i] ;)
Previous
Showing 11-18 of 18 results.
Comments