cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A163276 a(n) = n^6*(n+1)^2/2.

Original entry on oeis.org

0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832, 26572050, 60500000, 127552392, 252315648, 473027282, 847072800, 1458000000, 2424307712, 3910286178, 6139206432, 9409176200, 14112000000, 20755401282, 29988984608
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^6*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
  • Maple
    seq((1/2)*n^6*(n+1)^2, n = 0 .. 25); # Emeric Deutsch, Aug 01 2009
  • Mathematica
    Table[(1/2)*n^6*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832}, 50] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1 + 135*x +1656*x^2 +4456*x^3 +3231*x^4 +585*x^5 +16*x^6)/(1-x)^9 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
    

Formula

G.f.: 2*x*(1+135*x+1656*x^2+4456*x^3+3231*x^4+585*x^5+16*x^6)/(1-x)^9. - Colin Barker, May 05 2012
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2 + Pi^4/15 + 2*Pi^6/945 - 14 - 8*zeta(3) - 4*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 14 + 2*Pi^2/3 + 7*Pi^4/120 + 31*Pi^6/15120 - 24*log(2) - 6*zeta(3) - 15*zeta(5)/4. (End)

Extensions

Extended by Emeric Deutsch, Aug 01 2009

A163277 a(n) = n^7*(n+1)^2/2.

Original entry on oeis.org

0, 2, 576, 17496, 204800, 1406250, 6858432, 26353376, 84934656, 239148450, 605000000, 1403076312, 3027787776, 6149354666, 11859019200, 21870000000, 38788923392, 66474865026, 110505715776, 178774347800, 282240000000
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^7*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
  • Maple
    A163277 := proc(n) n^7*(n+1)^2/2 ; end proc: seq(A163277(n),n=0..60) ; \\ R. J. Mathar, Feb 05 2010
  • Mathematica
    Table[(1/2)*n^7*(n + 1)^2, {n,0,50}] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1 +278*x +5913*x^2 +27760*x^3 +38435*x^4 +16434*x^5 +1867*x^6 +32*x^7)/(x-1)^10 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
    

Formula

From R. J. Mathar, Feb 05 2010: (Start)
a(n) = n^2*A163275(n).
G.f.: 2*x*(1 +278*x +5913*x^2 +27760*x^3 +38435*x^4 +16434*x^5 +1867*x^6 +32*x^7)/(x-1)^10. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 16 - 7*Pi^2/3 - 4*Pi^4/45 - 4*Pi^6/945 + 10*zeta(3) + 6*zeta(5) + 2*zeta(7).
Sum_{n>=1} (-1)^(n+1)/a(n) = 28*log(2) + 15*zeta(3)/2 + 45*zeta(5)/8 + 63*zeta(7)/32 - 16 - 5*Pi^2/6 - 7*Pi^4/90 - 31*Pi^6/7560. (End)

Extensions

Extended by R. J. Mathar, Feb 05 2010

A254371 Sum of cubes of the first n even numbers (A016743).

Original entry on oeis.org

0, 8, 72, 288, 800, 1800, 3528, 6272, 10368, 16200, 24200, 34848, 48672, 66248, 88200, 115200, 147968, 187272, 233928, 288800, 352800, 426888, 512072, 609408, 720000, 845000, 985608, 1143072, 1318688, 1513800, 1729800, 1968128, 2230272, 2517768, 2832200, 3175200
Offset: 0

Views

Author

Luciano Ancora, Mar 16 2015

Keywords

Comments

Property: for n >= 2, each (a(n), a(n)+1, a(n)+2) is a triple of consecutive terms that are the sum of two nonzero squares; precisely: a(n) = (n*(n + 1))^2 + (n*(n + 1))^2, a(n)+1 = (n^2+2n)^2 + (n^2-1)^2 and a(n)+2 = (n^2+n+1)^2 + (n^2+n-1)^2 (see Diophante link). - Bernard Schott, Oct 05 2021

Crossrefs

Cf. A000537 (sum of first n cubes); A002593 (sum of first n odd cubes).
Cf. A060300 (2*a(n)).
First bisection of A105636; second bisection of A212892.

Programs

  • GAP
    List([0..35],n->2*(n*(n+1))^2); # Muniru A Asiru, Oct 24 2018
  • Magma
    [2*n^2*(n+1)^2: n in [0..40]]; // Bruno Berselli, Mar 23 2015
    
  • Maple
    A254371:=n->2*n^2*(n + 1)^2: seq(A254371(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[2 n^2 (n+1)^2, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 72, 288, 800}, 40]
    Accumulate[Range[0,80,2]^3] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    a(n)=sum(i=0, n, 8*i^3); \\ Michael B. Porter, Mar 16 2015
    

Formula

G.f.: 8*x*(1 + 4*x + x^2)/(1 - x)^5.
a(n) = 2*n^2*(n + 1)^2.
a(n) = 2*A035287(n+1) = 2*A002378(n)^2 = 8*A000217(n)^2. - Bruce J. Nicholson, Apr 23 2017
a(n) = 8*A000537(n). - Michel Marcus, Apr 23 2017
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 - 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/2 - 2*log(2). (End)
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: 2*x*(2 + x)*(2 + 6*x + x^2)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*A163102(n) = A060300(n)/2. (End)

A269946 Triangle read by rows, Lah numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^3+k^3)*T(n-1, k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 18, 18, 1, 0, 504, 648, 72, 1, 0, 32760, 47160, 7200, 200, 1, 0, 4127760, 6305040, 1141560, 45000, 450, 1, 0, 895723920, 1416456720, 283704120, 13741560, 198450, 882, 1, 0, 308129028480, 498072032640, 106386981120, 5876519040, 106616160, 691488, 1568, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Examples

			Triangle starts:
[1]
[0, 1]
[0, 2,       1]
[0, 18,      18,      1]
[0, 504,     648,     72,      1]
[0, 32760,   47160,   7200,    200,   1]
[0, 4127760, 6305040, 1141560, 45000, 450, 1]
		

Crossrefs

Cf. A038207 (order 0), A111596 (order 1), A268434 (order 2).

Programs

  • Maple
    T := proc(n, k) option remember;
        `if`(n=k, 1,
        `if`(k<0 or k>n, 0,
         T(n-1, k-1) + ((n-1)^3+k^3) * T(n-1, k) )) end:
    for n from 0 to 6 do seq(T(n,k), k=0..n) od;
  • Mathematica
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^3 + k^3)*T[n-1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)

Formula

T(n,k) = Sum_{j=k..n} A269947(n,j)*A269948(j,k).
T(n,1) = Product_{k=1..n} (k-1)^3+1 for n>=1 (cf. A255433).
T(n,n-1) = (n-1)^2*n^2/2 for n>=1 (cf. A163102).

A307304 Number of inequivalent ways of placing 2 nonattacking rooks on n X n board up to rotations and reflections of the board.

Original entry on oeis.org

0, 1, 4, 13, 31, 66, 123, 214, 346, 535, 790, 1131, 1569, 2128, 2821, 3676, 4708, 5949, 7416, 9145, 11155, 13486, 16159, 19218, 22686, 26611, 31018, 35959, 41461, 47580, 54345, 61816, 70024, 79033, 88876, 99621, 111303, 123994, 137731, 152590, 168610, 185871
Offset: 1

Views

Author

Mo Li, Apr 19 2019

Keywords

Examples

			For n = 4 the a(4) = 13 solutions are
{{1,0,0,0}}  {{1,0,0,0}}  {{1,0,0,0}}
{{0,1,0,0}}  {{0,0,1,0}}  {{0,0,0,1}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
—————————————————————————————————————
{{1,0,0,0}}  {{1,0,0,0}}  {{1,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,1,0}}  {{0,0,0,1}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,1}}
—————————————————————————————————————
{{0,1,0,0}}  {{0,1,0,0}}  {{0,1,0,0}}
{{1,0,0,0}}  {{0,0,1,0}}  {{0,0,0,1}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
—————————————————————————————————————
{{0,1,0,0}}  {{0,1,0,0}}  {{0,1,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,1,0}}  {{0,0,0,1}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,1,0}}
—————————————————————————————————————
{{0,0,0,0}}
{{0,1,0,0}}
{{0,0,1,0}}
{{0,0,0,0}}
		

Crossrefs

Programs

  • Mathematica
    Table[
    Piecewise[{{(n (n^3 - 2 n^2 + 6 n - 4))/16, Mod[n, 2] == 0},
    {((n - 1) (n^3 - n^2 + 5 n - 1))/16, Mod[n, 2] == 1}}],{n, 20}]

Formula

a(n) = (1/16)*n*(n^3-2n^2+6n-4) if n is even;
a(n) = (1/16)*(n-1)*(n^3-n^2+5n-1) if n is odd.
G.f.: -x^2*(x^2+1)*(x^2+x+1)/((x+1)^2*(x-1)^5). - Alois P. Heinz, Apr 26 2019

A331528 a(n) = n^2 * (n+1)^2 * (n^2+n+1) / 12.

Original entry on oeis.org

0, 1, 21, 156, 700, 2325, 6321, 14896, 31536, 61425, 111925, 193116, 318396, 505141, 775425, 1156800, 1683136, 2395521, 3343221, 4584700, 6188700, 8235381, 10817521, 14041776, 18030000, 22920625, 28870101, 36054396, 44670556, 54938325, 67101825, 81431296, 98224896
Offset: 0

Views

Author

Seiichi Manyama, Jan 19 2020

Keywords

Comments

Let b(n,k) = Sum_{j=0..n} (-1)^(n-j)* j^k * binomial(n,j) * binomial(n+j,j).
b(n,0) = 1.
b(n,1) = 1/1! * n * (n+1).
b(n,2) = 1/2! * n^2 * (n+1)^2.
b(n,3) = 1/3! * n^2 * (n+1)^2 * (n^2+n+1) (= 2*a(n)).
b(n,4) = 1/4! * n^3 * (n+1)^3 * (n^2+n+4).
b(n,5) = 1/5! * n^2 * (n+1)^2 * (n^6+3*n^5+13*n^4+21*n^3+18*n^2+8*n-4).
b(n,6) = 1/6! * n^3 * (n+1)^3 * (n^2+n+4) * (n^4+2*n^3+17*n^2+16*n-6).

Crossrefs

Cf. A002378 (b(n,1)), A163102 (b(n,2)), A168178 (first differences).

Programs

  • Magma
    [n^2*(n+1)^2*(n^2+n+1)/12:n in [0..32]]; // Marius A. Burtea, Jan 19 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 33); [0] cat (Coefficients(R!( x*(x^4+14*x^3+30*x^2+14*x+1)/(1-x)^7))); // Marius A. Burtea, Jan 19 2020
  • Mathematica
    a[n_] := (n*(n+1))^2 * (n^2+n+1) / 12; Array[a, 33, 0] (* Amiram Eldar, May 05 2021 *)
  • PARI
    {a(n) = n^2*(n+1)^2*(n^2+n+1)/12}
    

Formula

G.f.: x * (x^4+14*x^3+30*x^2+14*x+1)/(1-x)^7.
Previous Showing 11-16 of 16 results.