cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A086903 a(n) = 8*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 8.

Original entry on oeis.org

2, 8, 62, 488, 3842, 30248, 238142, 1874888, 14760962, 116212808, 914941502, 7203319208, 56711612162, 446489578088, 3515205012542, 27675150522248, 217885999165442, 1715412842801288, 13505416743244862, 106327921103157608
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003

Keywords

Comments

a(n+1)/a(n) converges to (4+sqrt(15)) = 7.872983... a(0)/a(1)=2/8; a(1)/a(2)=8/62; a(2)/a(3)=62/488; a(3)/a(4)=488/3842; ... etc. Lim a(n)/a(n+1) as n approaches infinity = 0.127016... = 1/(4+sqrt(15)) = (4-sqrt(15)).
Twice A001091. - John W. Layman, Sep 25 2003
Except for the first term, positive values of x (or y) satisfying x^2 - 8xy + y^2 + 60 = 0. - Colin Barker, Feb 13 2014

Examples

			a(4) = 3842 = 8*a(3) - a(2) = 8*488 - 62 = (4+sqrt(15))^4 + (4-sqrt(15))^4 = 3841.9997397 + 0.0002603 = 3842.
		

Crossrefs

Programs

  • Magma
    I:=[2,8]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 15 2014
  • Mathematica
    a[0] = 2; a[1] = 8; a[n_] := 8a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
    CoefficientList[Series[(2 - 8 x)/(1 - 8 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 15 2014 *)
    LinearRecurrence[{8,-1},{2,8},30] (* Harvey P. Dale, Jan 18 2015 *)
  • Sage
    [lucas_number2(n,8,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = (4+sqrt(15))^n + (4-sqrt(15))^n.
G.f.: (2-8*x)/(1-8*x+x^2). [Philippe Deléham, Nov 02 2008]
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = product {n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 4 - sqrt(15). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.12474 84992 41370 33639 ... = 2 + 1/(8 + 1/(62 + 1/(488 + ...))). Cf. A174502 and A005248.
Also F(-alpha) = 0.87474 74663 84045 35032 ... has the continued fraction representation 1 - 1/(8 - 1/(62 - 1/(488 - ...))) and the simple continued fraction expansion 1/(1 + 1/((8-2) + 1/(1 + 1/((62-2) + 1/(1 + 1/((488-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((8^2-4) + 1/(1 + 1/((62^2-4) + 1/(1 + 1/((488^2-4) + 1/(1 + ...))))))).
(End)

A174502 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086903(n)) ), where A086903(n) = (4+sqrt(15))^n + (4-sqrt(15))^n.

Original entry on oeis.org

1, 6, 1, 60, 1, 486, 1, 3840, 1, 30246, 1, 238140, 1, 1874886, 1, 14760960, 1, 116212806, 1, 914941500, 1, 7203319206, 1, 56711612160, 1, 446489578086, 1, 3515205012540, 1, 27675150522246, 1, 217885999165440, 1, 1715412842801286, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A086903(n)) or, more explicitly,
L = 1/8 + 1/(2*62) + 1/(3*488) + 1/(4*3842) + 1/(5*30248) +...
so that L = 0.1338200441271648228100625767561479963630539052200...
then exp(L) = 1.1431870779045667085973926071888878662387686835715...
equals the continued fraction given by this sequence:
exp(L) = [1;6,1,60,1,486,1,3840,1,30246,1,238140,1,...]; i.e.,
exp(L) = 1 + 1/(6 + 1/(1 + 1/(60 + 1/(1 + 1/(486 + 1/(1 +...)))))).
Compare these partial quotients to A086903(n), n=1,2,3,...:
[8,62,488,3842,30248,238142,1874888,14760962,116212808,914941502,...].
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,9,0,-9,0,1},{1,6,1,60,1,486},50] (* Harvey P. Dale, Jun 09 2013 *)
  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((4+sqrt(15))^m+(4-sqrt(15))^m))));contfrac(exp(L))[n]}

Formula

a(2n-2) = 1, a(2n-1) = A086903(n) - 2, for n>=1 [conjecture].
The above conjectures are correct. See the Bala link for details. - Peter Bala, Jan 08 2013
a(n) = 9*a(n-2)-9*a(n-4)+a(n-6). G.f.: -(x^4+6*x^3-8*x^2+6*x+1) / ((x-1)*(x+1)*(x^4-8*x^2+1)). [Colin Barker, Jan 20 2013]

A174503 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A087799(n)) ), where A087799(n) = (5+sqrt(24))^n + (5-sqrt(24))^n.

Original entry on oeis.org

1, 8, 1, 96, 1, 968, 1, 9600, 1, 95048, 1, 940896, 1, 9313928, 1, 92198400, 1, 912670088, 1, 9034502496, 1, 89432354888, 1, 885289046400, 1, 8763458109128, 1, 86749292044896, 1, 858729462339848, 1, 8500545331353600, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A087799(n)) or, more explicitly,
L = 1/10 + 1/(2*98) + 1/(3*970) + 1/(4*9602) + 1/(5*95050) +...
so that L = 0.1054740177896236251618898675297390156061405857647...
then exp(L) = 1.1112372317482311056432125938345153306039099019639...
equals the continued fraction given by this sequence:
exp(L) = [1;8,1,96,1,968,1,9600,1,95048,1,940896,1,...]; i.e.,
exp(L) = 1 + 1/(8 + 1/(1 + 1/(96 + 1/(1 + 1/(968 + 1/(1 +...)))))).
Compare these partial quotients to A087799(n), n=1,2,3,...:
[10,98,970,9602,95050,940898,9313930,92198402,912670090,9034502498,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((5+sqrt(24))^m+(5-sqrt(24))^m))));contfrac(exp(L))[n]}

Formula

a(2n-2) = 1, a(2n-1) = A087799(n) - 2, for n>=1 [conjecture].
The above conjectures are correct. See the Bala link for details. - Peter Bala, Jan 08 2013
a(n) = 11*a(n-2)-11*a(n-4)+a(n-6). G.f.: -(x^4+8*x^3-10*x^2+8*x+1) / ((x-1)*(x+1)*(x^4-10*x^2+1)). [Colin Barker, Jan 20 2013]

A221073 Simple continued fraction expansion of an infinite product.

Original entry on oeis.org

2, 4, 1, 8, 1, 32, 1, 56, 1, 196, 1, 336, 1, 1152, 1, 1968, 1, 6724, 1, 11480, 1, 39200, 1, 66920, 1, 228484, 1, 390048, 1, 1331712, 1, 2273376, 1, 7761796, 1, 13250216, 1, 45239072, 1, 77227928, 1, 263672644, 1, 450117360, 1, 1536796800, 1, 2623476240, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 2. For other cases see A221074 (m = 3), A221075 (m = 4) and A221076 (m = 5).
If we denote the present sequence by [2; 4, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-sqrt(2)*{(sqrt(2)-1)^(2*k+1)}^(4*n+3)]/[1 - sqrt(2)*{(sqrt(2)-1)^(2*k+1)}^(4*n+1)]. An example is given below.

Examples

			Product {n >= 0} {1 - sqrt(2)*(sqrt(2) - 1)^(4*n+3)}/{1 - sqrt(2)*(sqrt(2) - 1)^(4*n+1)} = 2.20409 39255 78752 05766 ...
= 2 + 1/(4 + 1/(1 + 1/(8 + 1/(1 + 1/(32 + 1/(1 + 1/(56 + ...))))))).
We have (sqrt(2) - 1)^3 = 5*sqrt(2) - 7 so product {n >= 0} {1 - sqrt(2)*(5*sqrt(2) - 7)^(4*n+3)}/{1 - sqrt(2)*(5*sqrt(2) - 7)^(4*n+1)} = 1.11117 34981 94843 98511 ... = 1 + 1/(8 + 1/(1 + 1/(196 + 1/(1 + 1/(1968 + 1/(1 + 1/(39200 + ...))))))).
		

Crossrefs

Cf. A001108, A053141, A174500, A221074 (m = 3), A221075 (m = 4), A221076 (m = 5).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^10-2*x^8-6*x^6+12*x^4-4*x^3+x^2-4*x-2)/((x-1)*(x+1)*(x^4-2*x^2-1)*(x^4+2*x^2-1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    NProduct[( Sqrt[2]*(Sqrt[2] - 1)^(4*n + 3) - 1)/( Sqrt[2]*(Sqrt[2] - 1)^(4*n + 1) - 1), {n, 0, Infinity}, WorkingPrecision -> 200] // ContinuedFraction[#, 37] & (* Jean-François Alcover, Mar 06 2013 *)
    Join[{2},LinearRecurrence[{0,1,0,6,0,-6,0,-1,0,1},{4,1,8,1,32,1,56,1,196,1},60]] (* Harvey P. Dale, Feb 16 2014 *)
  • PARI
    x='x+O('x^30); Vec((x^10-2*x^8-6*x^6+12*x^4-4*x^3+x^2-4*x-2)/((x-1)*(x+1)*(x^4-2*x^2-1)*(x^4+2*x^2-1))) \\ G. C. Greubel, Jul 15 2018
    

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (sqrt(2) + 1)^(2*n) + (sqrt(2) - 1)^(2*n) - 2;
a(4*n - 1) = 1/sqrt(2)*{(sqrt(2) + 1)^(2*n + 1) + (sqrt(2) - 1)^(2*n + 1)} - 2.
a(4*n - 3) = 4*A001108(n); a(4*n - 1) = 4*A053141(n).
O.g.f.: 2 + x^2/(1 - x^2) + 4*x*(1 + x^2)^2/(1 - 7*x^4 + 7*x^8 - x^12) = 2 + 4*x + x^2 + 8*x^3 + x^4 + 32*x^5 + ....
O.g.f.: (x^10-2*x^8-6*x^6+12*x^4-4*x^3+x^2-4*x-2) / ((x-1)*(x+1)*(x^4-2*x^2-1)*(x^4+2*x^2-1)). - Colin Barker, Jan 10 2014

Extensions

More terms from Harvey P. Dale, Feb 16 2014

A174508 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086594(n)) ), where A086594(n) = (4+sqrt(17))^n + (4-sqrt(17))^n.

Original entry on oeis.org

1, 7, 65, 1, 535, 4353, 1, 35367, 287297, 1, 2333751, 18957313, 1, 153992263, 1250895425, 1, 10161155671, 82540140801, 1, 670482282087, 5446398397505, 1, 44241669462135, 359379754094593, 1, 2919279702218887, 23713617371845697, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A086594(n)) or, more explicitly,
L = 1/8 + 1/(2*66) + 1/(3*536) + 1/(4*4354) + 1/(5*35368) +...
so that L = 0.1332613701545977545822925541573311424901819508933...
then exp(L) = 1.1425485874089841897117810754210805471767735522069...
equals the continued fraction given by this sequence:
exp(L) = [1;7,65,1,535,4353,1,35367,287297,1,2333751,...]; i.e.,
exp(L) = 1 + 1/(7 + 1/(65 + 1/(1 + 1/(535 + 1/(4353 + 1/(1 +...)))))).
Compare these partial quotients to A086594(n), n=1,2,3,...:
[8,66,536,4354,35368,287298,2333752,18957314,153992264,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((4+sqrt(17))^m+(4-sqrt(17))^m))));contfrac(exp(L))[n]}

Formula

a(3n-3) = 1, a(3n-2) = A086594(2n-1) - 1, a(3n-1) = A086594(2n) - 1, for n>=1 [conjecture].
a(n) = 67*a(n-3)-67*a(n-6)+a(n-9). G.f.: -(x^2-x+1)*(x^6-8*x^5-8*x^4-2*x^3+72*x^2+8*x+1) / ((x-1)*(x^2+x+1)*(x^6-66*x^3+1)). [Colin Barker, Jan 20 2013]
From Peter Bala, Jan 25 2013: (Start)
The above conjectures are correct. The real number exp( Sum {n>=1} 1/(n*A086594(n)) ) is equal to the infinite product F(x) := product {n >= 0} (1 + x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = sqrt(17) - 4. Ramanujan has given a continued fraction expansion for the product F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(sqrt(N^2 + 4) - N)), N a positive integer. The present case is when N = 8. See the Bala link for details.
The theory also provides the simple continued fraction expansion of the numbers F({sqrt(17) - 4}^(2*k+1)), k = 1, 2, 3, ...: if [1; c(1), c(2), 1, c(3), c(4), 1, ...] denotes the present sequence then the simple continued fraction expansion of F({sqrt(17) - 4}^(2*k+1)) is given by [1; c(2*k+1), c(2*(2*k+1)), 1, c(3*(2*k+1)), c(4*(2*k+1)), 1, ...].
(End)

A174509 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086927(n)) ), where A086927(n) = (5+sqrt(26))^n + (5-sqrt(26))^n.

Original entry on oeis.org

1, 9, 101, 1, 1029, 10401, 1, 105049, 1060901, 1, 10714069, 108201601, 1, 1092730089, 11035502501, 1, 111447755109, 1125513053601, 1, 11366578291129, 114791295964901, 1, 1159279537940149, 11707586675366401, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A086927(n)) or, more explicitly,
L = 1/10 + 1/(2*102) + 1/(3*1030) + 1/(4*10402) + 1/(5*105050) +...
so that L = 0.1052516947742519131304505213983109248819463097531...
then exp(L) = 1.1109902055968924364755807035083159869000358017128...
equals the continued fraction given by this sequence:
exp(L) = [1;9,101,1,1029,10401,1,105049,1060901,1,...]; i.e.,
exp(L) = 1 + 1/(9 + 1/(101 + 1/(1 + 1/(1029 + 1/(10401 +1/(1+...)))))).
Compare these partial quotients to A086927(n), n=1,2,3,...:
[10,102,1030,10402,105050,1060902,10714070,108201602,...].
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,103,0,0,-103,0,0,1},{1,9,101,1,1029,10401,1,105049,1060901},30] (* Harvey P. Dale, Dec 24 2014 *)
  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((5+sqrt(26))^m+(5-sqrt(26))^m))));contfrac(exp(L))[n]}

Formula

a(3n-3) = 1, a(3n-2) = A086927(2n-1) - 1, a(3n-1) = A086927(2n) - 1, for n>=1 [conjecture].
a(n) = 103*a(n-3)-103*a(n-6)+a(n-9). G.f.: -(x^2-x+1)*(x^6-10*x^5-10*x^4-2*x^3+110*x^2+10*x+1) / ((x-1)*(x^2+x+1)*(x^6-102*x^3+1)). [Colin Barker, Jan 20 2013]
From Peter Bala, Jan 25 2013: (Start)
The above conjectures are correct. The real number exp( Sum {n>=1} 1/(n*A086927(n)) ) is equal to the infinite product F(x) := product {n >= 0} (1 + x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = sqrt(26) - 5. Ramanujan has given a continued fraction expansion for the product F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(sqrt(N^2 + 4) - N)), N a positive integer. The present case is when N = 10. See the Bala link for details.
The theory also provides the simple continued fraction expansion of the numbers F({sqrt(26) - 5}^(2*k+1)), k = 1, 2, 3, ...: if [1; c(1), c(2), 1, c(3), c(4), 1, ...] denotes the present sequence then the simple continued fraction expansion of F({sqrt(26) - 5}^(2*k+1)) is given by [1; c(2*k+1), c(2*(2*k+1)), 1, c(3*(2*k+1)), c(4*(2*k+1)), 1, ...].
(End)

A221074 Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 3.

Original entry on oeis.org

2, 8, 1, 16, 1, 96, 1, 176, 1, 968, 1, 1760, 1, 9600, 1, 17440, 1, 95048, 1, 172656, 1, 940896, 1, 1709136, 1, 9313928, 1, 16918720, 1, 92198400, 1, 167478080, 1, 912670088, 1, 1657862096, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 3. For other cases see A221073 (m = 2), A221075 (m = 4) and A221076 (m = 5).

Examples

			Product {n >= 0} {1 - sqrt(3)*(sqrt(3) - sqrt(2))^(4*n+3)}/{1 - sqrt(3)*(sqrt(3) - sqrt(2))^(4*n+1)} = 2.11180 16361 44098 52896 ...
= 2 + 1/(8 + 1/(1 + 1/(16 + 1/(1 + 1/(96 + 1/(1 + 1/(176 + ...))))))).
Since (sqrt(3) - sqrt(2))^3 = 9*sqrt(3) - 11*sqrt(2) we have the following simple continued fraction expansion:
product {n >= 0} {1 - sqrt(3)*(9*sqrt(3) - 11*sqrt(2))^(4*n+3)}/{1 - sqrt(3)*(9*sqrt(3) - 11*sqrt(2))^(4*n+1)} = 1 + 1/(16 + 1/(1 + 1/(968 + 1/(1 + 1/(17440 + 1/(1 + 1/(940896 + ...))))))).
		

Crossrefs

Cf. A098297, A105438, A132596, A174500, A221073 (m = 2), A221075 (m = 4), A221076 (m = 5).

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (sqrt(3) + sqrt(2))^(2*n) + (sqrt(3) - sqrt(2))^(2*n) - 2;
a(4*n - 1) = 1/sqrt(3)*{(sqrt(3) + sqrt(2))^(2*n + 1) + (sqrt(3) - sqrt(2))^(2*n + 1)} - 2.
a(4*n - 3) = 8*A098297(n) = 4*A132596(n); a(4*n - 1) = 4*A105038(n).
O.g.f.: 2 + x^2/(1 - x^2) + 8*x*(1 + x^2)^2/(1 - 11*x^4 + 11*x^8 - x^12) = 2 + 8*x + x^2 + 16*x^3 + x^4 + 96*x^5 + ....
If we denote the present sequence by [2; 8, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-sqrt(3)*{(sqrt(3)-sqrt(2))^(2*k+1)}^(4*n+3)]/[1 - sqrt(3)*{(sqrt(3)-sqrt(2))^(2*k+1)}^(4*n+1)]. An example is given below.
O.g.f.: (x^10-2*x^8-10*x^6+20*x^4-8*x^3+x^2-8*x-2) / ((x-1)*(x+1)*(x^8-10*x^4+1)). - Colin Barker, Jan 10 2014

A221076 Continued fraction expansion of product_{n>=0} (1-sqrt(5)*[sqrt(5)-2]^{4n+3})/(1-sqrt(5)*[sqrt(5)-2]^{4n+1}).

Original entry on oeis.org

2, 16, 1, 32, 1, 320, 1, 608, 1, 5776, 1, 10944, 1, 103680, 1, 196416, 1, 1860496, 1, 3524576, 1, 33385280, 1, 63245984, 1, 599074576, 1, 1134903168, 1, 10749957120, 1, 20365011072, 1, 192900153616, 1, 365435296160, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 5. For other cases see A221073 (m = 2), A221074 (m = 3) and A221075 (m = 4).
If we denote the present sequence by [2; 16, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-sqrt(5)*{(sqrt(5)-2)^(2*k+1)}^(4*n+3)]/[1 - sqrt(5)*{(sqrt(5)-2)^(2*k+1)}^(4*n+1)]. An example is given below.

Examples

			Product {n >= 0} {1 - sqrt(5)*(sqrt(5) - 2)^(4*n+3)}/{1 - sqrt(5)*(sqrt(5) - 2)^(4*n+1)} = 2.05892 54859 32105 82744 ...
= 2 + 1/(16 + 1/(1 + 1/(32 + 1/(1 + 1/(320 + 1/(1 + 1/(608 + ...))))))).
Since (sqrt(5) - 2)^3 = 17*sqrt(5) - 38 we have the following simple continued fraction expansion:
product {n >= 0} {1 - sqrt(5)*(17*sqrt(5) - 38)^(4*n+3)}/{1 - sqrt(5)*(17*sqrt(5) - 38)^(4*n+1)} = 1.03030 31892 29728 52318 ... = 1 + 1/(32 + 1/(1 + 1/(5776 + 1/(1 + 1/(196416 + 1/(1 + 1/(33385280 + ...))))))).
		

Crossrefs

Cf. A049664, A049863, A053606, A132584, A174500, A221073 (m = 2), A221074 (m = 3), A221075 (m = 4).

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,18,0,-18,0,-1,0,1},{2,16,1,32,1,320,1,608,1,5776,1},40] (* or *) Join[{2},Riffle[LinearRecurrence[{1,18,-18,-1,1},{16,32,320,608,5776},20],1]] (* Harvey P. Dale, Jun 05 2023 *)

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have:
a(4*n - 3) = (sqrt(5) + 2)^(2*n) + (sqrt(5) - 2)^(2*n) - 2;
a(4*n - 1) = 1/sqrt(5)*{(sqrt(5) + 2)^(2*n + 1) + (sqrt(5) - 2)^(2*n + 1)} - 2.
a(4*n - 3) = 16*A049863(n) = 4*A132584(n);
a(4*n - 1) = 32*A049664(n) = 4*A053606(n).
O.g.f.: 2 + x^2/(1 - x^2) + 16*x*(1 + x^2)^2/(1 - 19*x^4 + 19*x^8 - x^12) = 2 + 16*x + x^2 + 32*x^3 + x^4 + 320*x^5 + ....
O.g.f.: (x^10-2*x^8-18*x^6+36*x^4-16*x^3+x^2-16*x-2) / ((x-1)*(x+1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Jan 10 2014

A221364 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(3 - sqrt(5)).

Original entry on oeis.org

1, 1, 1, 5, 1, 16, 1, 45, 1, 121, 1, 320, 1, 841, 1, 2205, 1, 5776, 1, 15125, 1, 39601, 1, 103680, 1, 271441, 1, 710645, 1, 1860496, 1, 4870845, 1, 12752041, 1, 33385280, 1, 87403801, 1, 228826125, 1, 599074576, 1, 1568397605, 1, 4106118241, 1, 10749957120, 1, 28143753121
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 3. See also A221365 (N = 5), A221366 (N = 7), A221369 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(3 - sqrt(5)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below.

Examples

			F(1/2*(3 - sqrt(5))) = 1.53879 34992 88095 08323 ... = 1 + 1/(1 + 1/(1 + 1/(5 + 1/(1 + 1/(16 + 1/(1 + 1/(45 + ...))))))).
F((1/2*(3 - sqrt(5)))^2) = 1.16725 98258 10214 95210 ... = 1 + 1/(5 + 1/(1 + 1/(45 + 1/(1 + 1/(320 + 1/(1 + 1/(2205 + ...))))))).
F((1/2*(3 - sqrt(5)))^3) = 1.05883 42773 67371 19975 ... = 1 + 1/(16 + 1/(1 + 1/(320 + 1/(1 + 1/(5776 + 1/(1 + 1/(103680 + ...))))))).
		

Crossrefs

Cf. A001906, A002878, A004146, A049684, A081070, A081071, A174500 (N = 4), A221365 (N = 5), A221366 (N = 7), A221369 (N = 9).

Formula

a(2*n-1) = (1/2*(3 + sqrt(5)))^n + (1/2*(3 - sqrt(5)))^n - 2 = A004146(n); a(2*n) = 1.
a(4*n+1) = A081071(n) = A002878(n)^2;
a(4*n-1) = A081070(n) = 5*A049684(n) = 5*(A001906(n))^2.
a(n) = 4*a(n-2)-4*a(n-4)+a(n-6). G.f.: -(x^4+x^3-3*x^2+x+1) / ((x-1)*(x+1)*(x^2-x-1)*(x^2+x-1)). - Colin Barker, Jan 20 2013

Extensions

More terms from Michel Marcus, Feb 21 2025

A221365 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(5 - sqrt(21)).

Original entry on oeis.org

1, 3, 1, 21, 1, 108, 1, 525, 1, 2523, 1, 12096, 1, 57963, 1, 277725, 1, 1330668, 1, 6375621, 1, 30547443, 1, 146361600, 1, 701260563, 1, 3359941221, 1, 16098445548, 1, 77132286525, 1, 369562987083, 1, 1770682648896, 1
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 5. See also A221364 (N = 3), A221366 (N = 7) and A221367 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(5 - sqrt(21)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...].

Examples

			F(1/2*(5 - sqrt(21))) = 1.25274 83510 08359 27965 ... = 1 + 1/(3 + 1/(1 + 1/(21 + 1/(1 + 1/(108 + 1/(1 + 1/(525 + ...))))))).
F((1/2*(5 - sqrt(21)))^2) = 1.04545 84663 16495 30047 ... = 1 + 1/(21 + 1/(1 + 1/(525 + 1/(1 + 1/(12096 + 1/(1 + 1/(277725 + ...))))))).
F((1/2*(5 - sqrt(21)))^3) = 1.00917 43188 83793 73068 ... = 1 + 1/(108 + 1/(1 + 1/(12096 + 1/(1 + 1/(1330668 + 1/(1 + 1/(146361600 + ...))))))).
		

Crossrefs

Cf. A004254, A030221, A054493, A174500 (N = 4), A221364 (N = 3), A221366 (N = 7), A221369 (N = 9).

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-6,0,1},{1,3,1,21,1,108},40] (* Harvey P. Dale, Jun 06 2023 *)

Formula

a(2*n-1) = (1/2*(5 + sqrt(21)))^n + (1/2*(5 - sqrt(21)))^n - 2 = 3*A054493(n); a(2*n) = 1.
a(4*n+1) = 3*(A030221(n))^2; a(4*n-1) = 21*(A004254(n))^2.
a(n) = 6*a(n-2)-6*a(n-4)+a(n-6). G.f.: -(x^4+3*x^3-5*x^2+3*x+1) / ((x-1)*(x+1)*(x^4-5*x^2+1)). - Colin Barker, Jan 20 2013
Previous Showing 11-20 of 29 results. Next