cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A218530 Partial sums of floor(n/11).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008729.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
		

Crossrefs

Formula

a(11n) = A051865(n).
a(11n+1) = A180223(n).
a(11n+4) = A022268(n).
a(11n+5) = A022269(n).
a(11n+6) = A254963(n)
a(11n+9) = A211013(n).
a(11n+10) = A152740(n).
G.f.: x^11/((1-x)^2*(1-x^11)).

A008725 Molien series for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236, 244, 252, 261, 270, 279, 288, 297, 306
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of n into parts 1 and 7, where there are two kinds of part 1. - Joerg Arndt, Sep 27 2020
Define a general Somos-4 sequence by b(n) = (p1*b(n-1)*b(n-3) + p2*b(n-2)^2)/b(n-4) with b(0) = b0, b(1) = b1, b(2) = b2, b(3) = b3 and where p1 = (b1^3*b2 - b0^3*b3) / (b0*(b1^3 + b0^2*b2)), p2 = -b1*(b2^2 + b0*b3) / (b1^3 + b0^2*b2). Then b(n) = -b(-1-n) for all n in Z. The denominator of b(n) is a power of b0 times (b1^3 + b0^2*b2)^a(n-4). - Michael Somos, Nov 23 2023

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,9,11];; for n in [10..80] do a[n]:=2*a[n-1] -a[n-2]+a[n-7]-2*a[n-8]+a[n-9]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)^2*(1-x^7)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    1/((1-x)^2*(1-x^7)): seq(coeff(series(%, x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^7)), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,9,11}, 80] (* Harvey P. Dale, Sep 27 2014 *)
    a[ n_] := Floor[(n+4)*(n+5)/14]; (* Michael Somos, Nov 23 2023 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x)^2*(1-x^7))) \\ G. C. Greubel, Sep 09 2019
    
  • PARI
    {a(n) = (n+4)*(n+5)\14}; /* Michael Somos, Nov 23 2023 */
    
  • Sage
    def A008725_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)^2*(1-x^7))).list()
    A008725_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^7)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+7} floor(j/7).
a(n-7) = (1/2)*floor(n/7)*(2*n - 5 - 7*floor(n/7)). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9). - R. J. Mathar, Apr 20 2010
a(n) = A011867(n+5). - Pontus von Brömssen, Sep 27 2020
a(n) = a(-9-n) = A174738(n+7) = floor((n+4)*(n+5)/14) for all n in Z. - Michael Somos, Nov 23 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A134546 Triangle read by rows: T(n, k) = Sum_{j=0..n} floor(j / k).

Original entry on oeis.org

1, 3, 1, 6, 2, 1, 10, 4, 2, 1, 15, 6, 3, 2, 1, 21, 9, 5, 3, 2, 1, 28, 12, 7, 4, 3, 2, 1, 36, 16, 9, 6, 4, 3, 2, 1, 45, 20, 12, 8, 5, 4, 3, 2, 1, 55, 25, 15, 10, 7, 5, 4, 3, 2, 1, 66, 30, 18, 12, 9, 6, 5, 4, 3, 2, 1, 78, 36, 22, 15, 11, 8, 6, 5, 4, 3, 2, 1, 91, 42, 26, 18, 13, 10, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2007

Keywords

Comments

From Bob Selcoe, Aug 08 2016: (Start)
Columns are partial sums of k-repeating increasing positive integers:
Column 1 is {1+2+3+4+5+...} = A000217 (triangular numbers);
Column 2 is {1+1+2+2+3+3+4+4+...} = A002620 (quarter-squares);
Column 3 is {1+1+1+2+2+2+3+3+3+...} = A130518.
Columns k = 4..7 are A130519, A130520, A174709 and A174738, respectively.
T(n, k) is the number of positive multiples of k which can be expressed as i-j, {i=1..n; j=0..n-1}. So for example, T(5, 2) = 6 because there are 6 ways to express i-j {i<=5} as a multiple of 2: {5-3, 4-2, 3-1, 2-0, 5-1 and 4-0}. (End)
Conjecture: For T(n, k) n >= k^(3/2), there is at least one prime in the interval [T(n-1, k+1), T(n, k)]. - Bob Selcoe, Aug 21 2016
Theorem: For n >= 3*k, T(n, k) is composite. - Daniel Hoying, Jul 08 2020

Examples

			The triangle T(n, k) begins:
   n\k  1   2   3   4  5  6  7  8  9  10 ...
   1:   1
   2:   3   1
   3:   6   2   1
   4:  10   4   2   1
   5:  15   6   3   2  1
   6:  21   9   5   3  2  1
   7:  28  12   7   4  3  2  1
   8:  36  16   9   6  4  3  2  1
   9:  45  20  12   8  5  4  3  2  1
  10:  55  25  15  10  7  5  4  3  2   1
... Reformatted. - _Wolfdieter Lang_, Feb 04 2015
T(10,3) = 15: 3*floor(10/3)*floor(13/3)/2 - floor(10/3)*(3-1 - 13 mod 3) = 3*3*4/2 - 3*(3-1-1) = 18 - 3 = 15. - _Bob Selcoe_, Aug 21 2016
		

Crossrefs

Cf. A078567 (row sums), A000217 (column 1).

Programs

  • Maple
    T := proc(n, k) option remember: `if`(n = k, 1, T(n-1, k) + iquo(n,k)) end:
    seq(seq(T(n,k), k=1..n),n=1..16); # Peter Luschny, May 26 2020
  • Mathematica
    nn = 12; f[w_] := Map[PadRight[#, nn] &, w]; MapIndexed[Take[#1, First@ #2] &, f@ Table[Reverse@ Range@ n, {n, nn}].f@ Table[Boole@ Divisible[n, #] & /@ Range@ n, {n, nn}]] // Flatten (* Michael De Vlieger, Aug 10 2016 *)
  • PARI
    t(n, k) = if (k>n, 0, if (n==1, 1, t(n-1, k) + n\k));
    tabl(nn) = {m = matrix(nn, nn, n , k, t(n,k)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ Michel Marcus, Jan 18 2015
    
  • PARI
    trg(nn) = {ma = matrix(nn, nn, n, k, if (k<=n, n-k+1, 0)); mb = matrix(nn, nn, n, k, if (k<=n, !(n%k), 0)); ma*mb;} \\ Michel Marcus, Jan 20 2015

Formula

Original definition: T = A004736 * A051731 as infinite lower triangular matrices.
In other words: T(n, k) = Sum_{m=k..n} A004736(n, m)*A051731(m, k).
T(n, k) = 0 if n < k, T(1, 1) = 1, and T(n, k) = T(n-1, k) + floor(n/k), for n >= 2. - Richard R. Forberg, Jan 17 2015
T(n, k) = k*floor(n/k)*floor((n+k)/k)/2 - floor(n/k)*(k-1-(n mod k)). - Bob Selcoe, Aug 21 2016
T(n, k) = k*A000217(b) + (b+1)*[(n +1)-(b + 1)*k] for 1 <= k <= floor[(n + 1) / 2] where b = floor[(n - k + 1) / k], T(n, k) = n-k+1 for floor[(n + 1) / 2] < k <= n and T(n, k) = 0 for k > n. - Henri Gonin, May 12 2020
T(n, k) = (-k/2)*floor(n/k)^2+(n-k/2+1)*floor(n/k). - Daniel Hoying, May 25 2020
From Daniel Hoying, Jul 06 2020: (Start)
T(m + 2*n - 1, m + n) = n for n > 0, m >= 0.
T(3*m + 3*ceiling((n-3)/6) + (n+1)/2, 2*m + 2*ceiling((n-3)/6) + 1) = n for n > 0, n odd, 0 <= m <= floor(n/3).
T(3*m + 3*ceiling(n/6) + n/2 - 1, 2*m + 2*ceiling(n/6)) = n for n > 0, n even, 0 <= m <= floor(n/3). (End)

Extensions

Edited. Name clarified. Formulas rewritten. - Wolfdieter Lang, Feb 04 2015
Corrected and extended by Michael De Vlieger, Aug 10 2016
Edited and new name from Peter Luschny, Apr 02 2025

A011867 a(n) = floor(n*(n-1)/14).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236, 244, 252, 261, 270, 279, 288, 297
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*(n-1)/14): n in [0..70]]; // Vincenzo Librandi, Aug 29 2011
  • Mathematica
    Table[Floor[n(n - 1)/14], {n, 0, 59}] (* Alonso del Arte, Aug 26 2011 *)
    LinearRecurrence[{2,-1,0,0,0,0,1,-2,1},{0,0,0,0,0,1,2,3,4},70] (* Harvey P. Dale, Oct 22 2016 *)

Formula

From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9).
G.f.: x^5 / ((1-x)^3*(x^6+x^5+x^4+x^3+x^2+x+1) ). (End)

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A269445 a(n) = Sum_{k=0..n} floor(k/13).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

Partial sums of A090620.
More generally, the ordinary generating function for the Sum_{k=0..n} floor(k/m) is x^m/((1 - x^m)*(1 - x)^2).

Crossrefs

Cf. A090620.
Cf. similar sequences of Sum_{k=0..n} floor(k/m): A002620 (m=2), A130518 (m=3), A130519 (m=4), A130520 (m=5), A174709 (m=6), A174738 (m=7), A118729 (m=8), A218470 (m=9), A131242 (m=10), A218530 (m=11), A221912 (m=12), this sequence (m=13).

Programs

  • Mathematica
    Table[Sum[Floor[k/13], {k, 0, n}], {n, 0, 73}]
    LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2}, 74]

Formula

G.f.: x^13/((1 - x^13)*(1 - x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-13) - 2*a(n-14) + a(n-15).
Previous Showing 11-16 of 16 results.