cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A329144 Number of integer partitions of n whose differences are a periodic word.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 1, 2, 5, 3, 2, 8, 2, 5, 9, 7, 5, 12, 7, 7, 19, 9, 9, 21, 12, 15, 23, 18, 17, 29, 21, 19, 42, 23, 31, 42, 38, 29, 53, 43, 44, 62, 49, 52, 79, 55, 72, 75, 87, 63, 117, 79, 104, 107, 120, 99, 156, 117, 143, 147
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2019

Keywords

Comments

A finite sequence is periodic if its cyclic rotations are not all different.

Examples

			The a(n) partitions for n = 3, 6, 8, 9, 12, 15, 16:
  111  222     2222      333        444           555              4444
       321     11111111  432        543           654              7531
       111111            531        642           753              44332
                         32211      741           852              3332221
                         111111111  3333          951              4332211
                                    222222        33333            22222222
                                    3222111       54321            1111111111111111
                                    111111111111  322221111
                                                  111111111111111
		

Crossrefs

The Heinz numbers of these partitions are given by A329134.
The augmented version is A329143.
Periodic binary words are A152061.
Periodic compositions are A178472.
Numbers whose binary expansion is periodic are A121016.
Numbers whose prime signature is periodic are A329140.

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
    Table[Length[Select[IntegerPartitions[n],!aperQ[Differences[#]]&]],{n,30}]

A109511 Number of subsets of the first n numbers having a common divisor greater than 1.

Original entry on oeis.org

0, 1, 2, 4, 5, 10, 11, 19, 23, 40, 41, 79, 80, 145, 164, 292, 293, 577, 578, 1096, 1163, 2188, 2189, 4357, 4373, 8470, 8726, 16924, 16925, 33832, 33833, 66601, 67628, 133165, 133244, 266332, 266333, 528478, 532577, 1056985, 1056986, 2113717
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 01 2005

Keywords

Examples

			a(6) = #{{2}, {3}, {4}, {5}, {6}, {2,4}, {2,6}, {3,6}, {4,6}, {2,4,6}} = 10.
		

Crossrefs

Partial sums of A178472.

Programs

  • Mathematica
    Table[Sum[-MoebiusMu[k] (2^Floor[n/k] - 1), {k, 2, n}], {n, 1, 41}]  (* Geoffrey Critzer, Jan 03 2012 *)
  • PARI
    a(n) = sum(k = 2, n, -moebius(k) * (1 << (n\k) - 1)); \\ Amiram Eldar, May 09 2025

Formula

a(n) = Sum_{k=2..n} -A008683(k) * (2^floor(n/k)-1).
a(n) = 2^n - A085945(n) - 1 = A000225(n) - A085945(n);
a(n) - a(n-1) = 1 iff n is prime;
a(p^e) = a(p^e - 1) + 2^(p^(e-1) - 1) for p prime, e > 0;
a(p*q) = a(p*q - 1) + 2^(p-1) + 2^(q-1) - 1 for primes p <> q.

A282748 Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_i, x_j) = 1 for all i != j (where 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 3, 4, 1, 1, 2, 9, 4, 5, 1, 1, 6, 3, 16, 5, 6, 1, 1, 4, 15, 4, 25, 6, 7, 1, 1, 6, 9, 28, 5, 36, 7, 8, 1, 1, 4, 21, 16, 45, 6, 49, 8, 9, 1, 1, 10, 9, 52, 25, 66, 7, 64, 9, 10, 1, 1, 4, 39, 16, 105, 36, 91, 8, 81, 10, 11, 1, 1, 12, 9, 100, 25, 186, 49, 120, 9, 100, 11, 12, 1, 1, 6, 45, 16, 205, 36, 301, 64, 153, 10, 121, 12, 13, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2017

Keywords

Comments

See A101391 for the triangle T(n,k) = number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (2 <= k <= n).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  2,  3,   1;
  1,  4,  3,   4,   1;
  1,  2,  9,   4,   5,   1;
  1,  6,  3,  16,   5,   6,  1;
  1,  4, 15,   4,  25,   6,  7,   1;
  1,  6,  9,  28,   5,  36,  7,   8,  1;
  1,  4, 21,  16,  45,   6, 49,   8,  9,   1;
  1, 10,  9,  52,  25,  66,  7,  64,  9,  10,  1;
  1,  4, 39,  16, 105,  36, 91,   8, 81,  10, 11,  1;
  1, 12,  9, 100,  25, 186, 49, 120,  9, 100, 11, 12, 1;
  ...
From _Gus Wiseman_, Nov 12 2020: (Start)
Row n = 6 counts the following compositions:
  (6)  (15)  (114)  (1113)  (11112)  (111111)
       (51)  (123)  (1131)  (11121)
             (132)  (1311)  (11211)
             (141)  (3111)  (12111)
             (213)          (21111)
             (231)
             (312)
             (321)
             (411)
(End)
		

Crossrefs

A072704 counts the unimodal instead of coprime version.
A087087 and A335235 rank these compositions.
A101268 gives row sums.
A101391 is the relatively prime instead of pairwise coprime version.
A282749 is the unordered version.
A000740 counts relatively prime compositions, with strict case A332004.
A007360 counts pairwise coprime or singleton strict partitions.
A051424 counts pairwise coprime or singleton partitions, ranked by A302569.
A097805 counts compositions by sum and length.
A178472 counts compositions with a common divisor.
A216652 and A072574 count strict compositions by sum and length.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A335235 ranks pairwise coprime or singleton compositions.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337562 counts pairwise coprime or singleton strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],Length[#]==1||CoprimeQ@@#&]],{n,10},{k,n}] (* Gus Wiseman, Nov 12 2020 *)

Formula

It seems that no general formula or recurrence is known, although Shonhiwa gives formulas for a few of the early diagonals.

A329145 Number of non-necklace compositions of n.

Original entry on oeis.org

0, 0, 1, 3, 9, 19, 45, 93, 197, 405, 837, 1697, 3465, 7011, 14193, 28653, 57825, 116471, 234549, 471801, 948697, 1906407, 3829581, 7689357, 15435033, 30973005, 62137797, 124630149, 249922665, 501078345, 1004468157, 2013263853, 4034666121, 8084640465
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.

Examples

			The a(3) = 1 through a(6) = 19 compositions:
  (21)  (31)   (32)    (42)
        (121)  (41)    (51)
        (211)  (131)   (141)
               (212)   (213)
               (221)   (231)
               (311)   (312)
               (1121)  (321)
               (1211)  (411)
               (2111)  (1131)
                       (1221)
                       (1311)
                       (2112)
                       (2121)
                       (2211)
                       (3111)
                       (11121)
                       (11211)
                       (12111)
                       (21111)
		

Crossrefs

Numbers whose prime signature is not a necklace are A329142.
Binary necklaces are A000031.
Necklace compositions are A008965.
Lyndon compositions are A059966.
Numbers whose reversed binary expansion is a necklace are A328595.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!neckQ[#]&]],{n,10}]

Formula

a(n) = 2^(n-1) - A008965(n).

A247146 As a binary numeral, the bit 2^(m-1) of a(n) is 1 iff m is a proper divisor of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 11, 5, 19, 1, 47, 1, 67, 21, 139, 1, 295, 1, 539, 69, 1027, 1, 2223, 17, 4099, 261, 8267, 1, 16951, 1, 32907, 1029, 65539, 81, 133423, 1, 262147, 4101, 524955, 1, 1056871, 1, 2098187, 16661, 4194307, 1, 8423599, 65, 16777747, 65541
Offset: 1

Views

Author

Morgan L. Owens, Nov 21 2014

Keywords

Comments

a(n)==1 iff n is prime.
Apparently Moebius transform of A178472.
For n>1, the binary representation of a(n) is given by row (n-1) of A077049 (when read as a triangular array). - Tom Edgar, Nov 28 2014

Crossrefs

Programs

  • Mathematica
    With[{n=Range[100]},(1/2) ((Total/@(2^Divisors[n])) - 2^n)]
  • PARI
    a(n) = sumdiv(n, k, 2^(k-1)) - 2^(n-1); \\ Michel Marcus, Nov 25 2014
    
  • Python
    from sympy import divisors
    def A247146(n): return sum(1<Chai Wah Wu, Jul 15 2022

Formula

a(n) = A034729(n) - 2^(n-1). - Michel Marcus, Nov 22 2014

A332003 Number of compositions (ordered partitions) of n into distinct parts having a common factor > 1 with n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 5, 1, 13, 1, 13, 7, 19, 1, 59, 1, 59, 15, 65, 1, 309, 5, 133, 27, 195, 1, 2883, 1, 435, 67, 617, 17, 4133, 1, 1177, 135, 2915, 1, 36647, 1, 3299, 1767, 4757, 1, 52045, 13, 21149, 619, 11307, 1, 187307, 69, 29467, 1179, 30461
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Examples

			a(6) = 3 because we have [6], [4, 2] and [2, 4].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local b; b:=
          proc(m, i, p) option remember; `if`(m=0, p!, `if`(i<1, 0,
            b(m, i-1, p)+`if`(i>m or igcd(i, n)=1, 0, b(m-i, i-1, p+1))))
          end; forget(b): b(n$2, 0)
        end:
    seq(a(n), n=0..63);  # Alois P. Heinz, Feb 04 2020
  • Mathematica
    a[n_] := Module[{b}, b[m_, i_, p_] := b[m, i, p] = If[m == 0, p!, If[i < 1, 0, b[m, i - 1, p] + If[i > m || GCD[i, n] == 1, 0, b[m - i, i - 1, p + 1]]]]; b[n, n, 0]];
    a /@ Range[0, 63] (* Jean-François Alcover, Nov 26 2020, after Alois P. Heinz *)

A338554 Number of non-constant integer partitions of n whose parts have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 5, 0, 9, 0, 13, 6, 18, 0, 33, 0, 40, 14, 54, 0, 87, 5, 99, 27, 133, 0, 211, 0, 226, 55, 295, 18, 443, 0, 488, 100, 637, 0, 912, 0, 1000, 198, 1253, 0, 1775, 13, 1988, 296, 2434, 0, 3358, 59, 3728, 489, 4563, 0, 6241, 0, 6840, 814
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2020

Keywords

Examples

			The a(6) = 2 through a(15) = 6 partitions (empty columns indicated by dots, A = 10, B = 11, C = 12):
  (42)  .  (62)   (63)  (64)    .  (84)     .  (86)      (96)
           (422)        (82)       (93)        (A4)      (A5)
                        (442)      (A2)        (C2)      (C3)
                        (622)      (633)       (644)     (663)
                        (4222)     (642)       (662)     (933)
                                   (822)       (842)     (6333)
                                   (4422)      (A22)
                                   (6222)      (4442)
                                   (42222)     (6422)
                                               (8222)
                                               (44222)
                                               (62222)
                                               (422222)
		

Crossrefs

A046022 lists positions of zeros.
A082023(n) - A059841(n) is the 2-part version, n > 2.
A303280(n) - 1 is the strict case (n > 1).
A338552 lists the Heinz numbers of these partitions.
A338553 counts the complement, with Heinz numbers A338555.
A000005 counts constant partitions, with Heinz numbers A000961.
A000837 counts relatively prime partitions, with Heinz numbers A289509.
A018783 counts non-relatively prime partitions (ordered: A178472), with Heinz numbers A318978.
A282750 counts relatively prime partitions by sum and length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&GCD@@#>1&]],{n,0,30}]

Formula

For n > 0, a(n) = A018783(n) - A000005(n) + 1.

A304623 Regular triangle where T(n,k) is the number of aperiodic multisets with maximum k that fit within some normal multiset of weight n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 11, 8, 1, 10, 21, 27, 16, 1, 12, 38, 61, 63, 32, 1, 18, 57, 120, 162, 143, 64, 1, 22, 87, 205, 347, 409, 319, 128, 1, 28, 122, 333, 651, 950, 1000, 703, 256, 1, 32, 164, 506, 1132, 1926, 2504, 2391, 1535, 512, 1, 42, 217, 734, 1840
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and is aperiodic if its multiplicities are relatively prime.

Examples

			Triangle begins:
1
1    2
1    4    4
1    6   11    8
1   10   21   27   16
1   12   38   61   63   32
1   18   57  120  162  143   64
1   22   87  205  347  409  319  128
The a(4,3) = 11 multisets are (3), (13), (23), (113), (123), (133), (223), (233), (1123), (1223), (1233).
		

Crossrefs

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length/@GatherBy[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&],Max],{n,10}]
  • PARI
    T(n,k) = sum(j=1, n, sumdiv(j, d, sum(i=max(1, j+k-n), d, moebius(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1)))) \\ Andrew Howroyd, Jan 20 2023

Formula

T(n,k) = Sum_{j=1..n} Sum_{d|j} Sum_{i=max(1, j+k-n)..d} mu(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1). - Andrew Howroyd, Jan 20 2023

A304648 Number of different periodic multisets that fit within some normal multiset of weight n.

Original entry on oeis.org

0, 1, 3, 7, 13, 25, 44, 78, 136, 242, 422, 747, 1314, 2326, 4121, 7338, 13052, 23288, 41568, 74329, 133011, 238338, 427278, 766652, 1376258, 2472012, 4441916, 7984990, 14358424, 25826779, 46465956, 83616962, 150497816, 270917035, 487753034, 878244512
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. It is periodic if its multiplicities have a common divisor greater than 1.

Examples

			The a(5) = 13 periodic multisets:
(11), (22), (33), (44),
(111), (222), (333),
(1111), (1122), (1133), (2222), (2233),
(11111).
		

Crossrefs

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]>1&]],{n,10}]
  • PARI
    seq(n)=Vec(sum(d=2, n, -moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x), -n) \\ Andrew Howroyd, Feb 04 2021

Formula

From Andrew Howroyd, Feb 04 2021: (Start)
a(n) = A027941(n) - A303976(n).
G.f.: Sum_{d>=2} -mu(d)*x^d/((1 - x - x^d*(2-x))*(1-x)).
(End)

Extensions

a(12)-a(13) from Robert Price, Sep 15 2018
Terms a(14) and beyond from Andrew Howroyd, Feb 04 2021

A356353 Numbers k such that A356352(k) <> 1.

Original entry on oeis.org

0, 3, 7, 12, 15, 31, 48, 51, 56, 60, 63, 127, 192, 195, 204, 207, 240, 243, 252, 255, 448, 455, 504, 511, 768, 771, 780, 783, 816, 819, 828, 831, 960, 963, 972, 975, 992, 1008, 1011, 1020, 1023, 2047, 3072, 3075, 3084, 3087, 3120, 3123, 3132, 3135, 3264, 3267
Offset: 1

Views

Author

Rémy Sigrist, Oct 15 2022

Keywords

Comments

Also, numbers whose binary expansions are juxtapositions of constant blocks of size g > 1.
A001196 and A097254 are subsequences.
There are A178472(k) terms with binary length k.

Examples

			The first terms, alongside their binary expansions and A356352(a(n)), are:
  n   a(n)  bin(a(n))   A356352(a(n))
  --  ----  ----------  -------------
   1     0           0              0
   2     3          11              2
   3     7         111              3
   4    12        1100              2
   5    15        1111              4
   6    31       11111              5
   7    48      110000              2
   8    51      110011              2
   9    56      111000              3
  10    60      111100              2
  11    63      111111              6
  12   127     1111111              7
  13   192    11000000              2
  14   195    11000011              2
  15   204    11001100              2
  16   207    11001111              2
		

Crossrefs

Programs

  • PARI
    is(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); gcd(r)!=1 }
    
  • PARI
    See Links section.
    
  • Python
    from math import gcd
    from itertools import groupby
    def ok(n):
        if n == 0: return True # by convention of A356352
        return gcd(*(len(list(g)) for k, g in groupby(bin(n)[2:]))) != 1
    print([k for k in range(3268) if ok(k)]) # Michael S. Branicky, Oct 15 2022
Previous Showing 31-40 of 40 results.