cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A195304 Decimal expansion of shortest length of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5).

Original entry on oeis.org

1, 8, 9, 6, 3, 0, 0, 5, 6, 6, 3, 0, 9, 2, 0, 2, 0, 1, 4, 7, 5, 3, 8, 6, 7, 2, 0, 3, 6, 5, 4, 8, 1, 9, 9, 1, 7, 0, 8, 0, 1, 0, 3, 2, 8, 2, 9, 8, 1, 9, 2, 8, 6, 6, 6, 4, 1, 0, 2, 7, 8, 4, 3, 9, 4, 4, 4, 2, 9, 7, 6, 3, 7, 7, 2, 5, 4, 6, 2, 9, 2, 1, 1, 7, 4, 3, 4, 9, 5, 1, 7, 5, 2, 6, 6, 7, 2, 1, 0, 7
Offset: 1

Views

Author

Clark Kimberling, Sep 18 2011

Keywords

Comments

The Philo line of a point P inside an angle T is the shortest segment that crosses T and passes through P. Philo lines are not generally Euclidean-constructible.
...
Suppose that P lies inside a triangle ABC. Let (A) denote the shortest length of segment from AB through P to AC, and likewise for (B) and (C). The Philo sum for ABC and P is here introduced as s=(A)+(B)+(C), and the Philo number for ABC and P, as s/(a+b+c), denoted by Philo(ABC,P).
...
Listed below are examples for which P=G (the centroid); in this list, r'n means sqrt(n) and t=(1+sqrt(5))/2 (the golden ratio).
a....b...c........(A).......(B)........(C)...Philo(ABC,G)
3....4....5......A195304...A195305....A105306...A195411
5....12...13.....A195412...A195413....A195414...A195424
7....24...25.....A195425...A195426....A195427...A195428
8....15...17.....A195429...A195430....A195431...A195432
1....1....r'2....A195433..-1+A179587..A195433...A195436
1....2....r'5....A195434...A195435....A195444...A195445
1....3....r'10...A195446...A195447....A195448...A195449
2....3....r'13...A195450...A195451....A195452...A195453
r'2..r'3..r'5....A195454...A195455....A195456...A195457
1....r'2..r'3....A195471...A195472....A195473...A195474
1....r'3..2......A195475...A195476....A195477...A195478
2....r'5..3......A195479...A195480....A195481...A195482
r'2..r'5..r'7....A195483...A195484....A195485...A195486
r'7..3....4......A195487...A195488....A195489...A195490
1....r't..t......A195491...A195492....A195493...A195494
t-1..t....r'3....A195495...A195496....A195497...A195498
A similar list for P=incenter is given at A195284.

Examples

			1.89630056630920201475386720365481991708010328....
		

Crossrefs

Cf. A195305, A195306, A195307; A195284 (P=incenter).

Programs

  • Mathematica
    a = 3; b = 4; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100]   (* (A) A195304 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100]   (* (B) A195305 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100]   (* (C) A195306 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100]   (* Philo(ABC,G) A195411 *)
  • PARI
    polrootsreal(2025*x^6 + 21429*x^4 + 4939*x^2 - 389017)[2] \\ Charles R Greathouse IV, Feb 03 2025

A179590 Decimal expansion of the volume of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 3, 2, 4, 0, 4, 5, 3, 1, 8, 3, 3, 3, 1, 9, 3, 1, 3, 0, 9, 3, 9, 4, 4, 9, 1, 1, 2, 4, 8, 7, 5, 1, 7, 4, 9, 0, 2, 9, 3, 7, 4, 5, 5, 7, 3, 0, 7, 4, 3, 5, 0, 4, 8, 2, 8, 4, 7, 2, 6, 4, 8, 3, 0, 2, 7, 3, 6, 8, 0, 6, 1, 7, 0, 9, 1, 8, 6, 9, 9, 3, 2, 9, 4, 2, 9, 4, 2, 9, 3, 8, 9, 1, 9, 1, 8, 8, 1, 8, 3, 3, 1, 3, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.32404531833319313093944911248751749029374557307435048284726483027368...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(5+4*Sqrt[5])/6,200]]

Formula

Digits of (5+4*sqrt(5))/6.

A131594 Decimal expansion of sqrt(2)/3, the volume of a regular octahedron with edge length 1.

Original entry on oeis.org

4, 7, 1, 4, 0, 4, 5, 2, 0, 7, 9, 1, 0, 3, 1, 6, 8, 2, 9, 3, 3, 8, 9, 6, 2, 4, 1, 4, 0, 3, 2, 3, 2, 6, 9, 2, 8, 5, 6, 5, 5, 7, 2, 9, 1, 7, 9, 2, 3, 1, 6, 0, 2, 4, 3, 9, 2, 2, 2, 6, 5, 7, 9, 3, 3, 0, 2, 4, 4, 1, 5, 9, 4, 8, 7, 3, 6, 9, 0, 1, 2, 9, 5, 0, 1, 2, 9, 1, 7, 8, 1, 0, 9, 2, 1, 3, 8, 5, 7, 5, 7, 8, 3, 3, 7
Offset: 0

Views

Author

Omar E. Pol, Aug 30 2007

Keywords

Comments

Volume of a regular octahedron: V = ((sqrt(2))/3)* a^3, where 'a' is the edge.

Examples

			0.471404520791031682933896...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A020829 (regular tetrahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).
Cf. A179587.

Programs

Formula

Equals A002193/3 = A010464/A010482. - R. J. Mathar, Dec 11 2009

Extensions

More digits from R. J. Mathar, Dec 11 2009

A179591 Decimal expansion of the surface area of pentagonal cupola with edge length 1.

Original entry on oeis.org

1, 6, 5, 7, 9, 7, 4, 9, 7, 5, 2, 9, 8, 8, 1, 9, 7, 0, 4, 6, 0, 9, 4, 0, 4, 6, 3, 4, 4, 3, 6, 3, 2, 2, 4, 6, 1, 8, 1, 0, 2, 6, 3, 6, 0, 9, 6, 1, 1, 7, 6, 5, 5, 1, 8, 1, 8, 7, 4, 7, 4, 4, 0, 5, 7, 2, 7, 5, 9, 4, 3, 4, 8, 4, 5, 8, 2, 6, 9, 3, 5, 7, 3, 8, 2, 0, 3, 5, 8, 2, 7, 9, 0, 0, 1, 9, 1, 2, 0, 4, 8, 2, 6, 8, 1
Offset: 2

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			16.5797497529881970460940463443632246181026360961176551818747440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(20+Sqrt[10*(80+31*Sqrt[5]+Sqrt[2175+930*Sqrt[5]])])/4,200]]

Formula

Digits of (20+sqrt(10*(80+31*sqrt(5)+sqrt(2175+930*sqrt(5)))))/4.

A179588 Decimal expansion of the surface area of square cupola with edge length 1.

Original entry on oeis.org

1, 1, 5, 6, 0, 4, 7, 7, 9, 3, 2, 3, 1, 5, 0, 6, 7, 3, 9, 1, 1, 3, 0, 8, 2, 3, 7, 8, 9, 9, 2, 5, 2, 6, 8, 5, 2, 4, 0, 8, 2, 1, 4, 9, 0, 0, 4, 5, 6, 4, 2, 7, 6, 7, 7, 4, 4, 0, 9, 1, 6, 6, 4, 5, 5, 4, 3, 3, 3, 9, 7, 9, 7, 3, 8, 3, 3, 0, 1, 4, 1, 1, 4, 7, 8, 1, 9, 2, 1, 2, 5, 5, 4, 1, 2, 5, 3, 1, 7, 2, 1, 1, 4, 5, 6
Offset: 2

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.

Examples

			11.56047793231506739113082378992526852408214900456427677440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[7+2*Sqrt[2]+Sqrt[3],200]]

Formula

Digits of 7 + 2*sqrt(2) + sqrt(3).

A179637 Decimal expansion of the surface area of pentagonal rotunda with edge length 1.

Original entry on oeis.org

2, 2, 3, 4, 7, 2, 0, 0, 2, 6, 5, 3, 9, 4, 1, 2, 8, 2, 7, 6, 7, 9, 8, 4, 1, 4, 1, 5, 8, 1, 8, 8, 6, 1, 3, 0, 7, 3, 8, 1, 8, 0, 1, 3, 5, 1, 3, 4, 3, 1, 6, 2, 2, 6, 1, 2, 9, 7, 9, 9, 7, 6, 3, 1, 6, 7, 1, 0, 2, 0, 4, 7, 1, 6, 7, 6, 3, 5, 2, 4, 7, 7, 6, 8, 3, 3, 9, 9, 7, 2, 1, 9, 3, 8, 6, 4, 1, 1, 4, 7, 0, 3, 3, 2, 0
Offset: 2

Views

Author

Keywords

Comments

Pentagonal rotunda: 20 vertices, 35 edges, and 17 faces.

Examples

			22.3472002653941282767984141581886130738180135134316226129799763167102...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5*(145+58*Sqrt[5]+2*Sqrt[30*(65+29*Sqrt[5])])]/2,200]]

Formula

Digits of sqrt(5*(145+58*sqrt(5)+2*sqrt(30*(65+29*sqrt(5)))))/2.

Extensions

Offset corrected by R. J. Mathar, Aug 15 2010

A224268 Decimal expansion of Product_{n>=1} (1 - 1/(4n+1)^2).

Original entry on oeis.org

9, 2, 7, 0, 3, 7, 3, 3, 8, 6, 5, 0, 6, 8, 5, 9, 5, 9, 2, 1, 6, 9, 2, 5, 1, 7, 3, 5, 9, 7, 6, 3, 0, 0, 2, 3, 1, 0, 8, 7, 9, 9, 4, 1, 1, 7, 6, 0, 8, 8, 3, 4, 5, 2, 7, 9, 2, 9, 6, 4, 0, 2, 2, 5, 2, 8, 0, 1, 0, 8, 8, 8, 4, 1, 9, 0, 5, 9, 9, 8, 9, 1, 7, 8, 6, 3, 5
Offset: 0

Views

Author

Bruno Berselli, Apr 02 2013

Keywords

Examples

			0.9270373386506859592169251735976300231087994117608834527929640225280...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.

Crossrefs

Cf. product(1-1/(4n+r)^2, n>=1): A096427 (r=-1), A112628 (r=0), A179587-1 (r=2).

Programs

  • Mathematica
    RealDigits[N[Product[1 - 1/(4 n + 1)^2, {n, 1, Infinity}], 90]][[1]] (* or, by the formula: *) RealDigits[Gamma[1/4]^2/(8 Sqrt[Pi]), 10, 90][[1]]
  • PARI
    prodnumrat(1 - 1/(4*n+1)^2, 1) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals Gamma(1/4)^2/(8*sqrt(Pi)) = L/(4*sqrt(2)), where L is the Lemniscate constant (A064853).
From Peter Bala, Feb 26 2019: (Start)
C = (Pi/4)*( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (-1)^m*2^(2*m+1)/Catalan(m) * Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ), for m = 0,1,2,....
C = Integral_{x = 0..1} 1/sqrt(1 + x^4) dx.
C = (1/sqrt(2))*Integral_{x = 0..1} 1/sqrt(1 - x^4) dx.
C = (3/2)*Integral_{x = 0..1} sqrt(1 + x^4) dx - sqrt(2)/2.
C = (1/8)*Integral_{x = 0..1} 1/(x - x^2)^(3/4) dx.
C = Sum_{n >= 0} binomial(-1/2,n)/(4*n + 1) = Sum_{n >= 0} binomial(2*n,n)/4^n * 1/(4*n + 1).
C = (1/2)*Sum_{n >= 0} (-1)^n*binomial(-3/4,n)/(4*n + 1).
Continued fraction: 1 - 1/(5 + 20/(1 + 30/(3 + ... + (4*n)*(4*n + 1)/(1 + (4*n + 1)*(4*n + 2)/(3 + ... ))))).
C = A085565/sqrt(2). C = Pi/(4*A096427). (End)
Equals A093341/2 = A327996^2. - Hugo Pfoertner, Oct 31 2024

A179589 Decimal expansion of the circumradius of square cupola with edge length 1.

Original entry on oeis.org

1, 3, 9, 8, 9, 6, 6, 3, 2, 5, 9, 6, 5, 9, 0, 6, 7, 0, 2, 0, 3, 1, 5, 4, 0, 5, 3, 9, 4, 3, 1, 9, 9, 8, 7, 6, 4, 6, 7, 3, 5, 2, 2, 5, 6, 3, 8, 6, 6, 2, 3, 8, 8, 7, 9, 9, 3, 0, 9, 3, 6, 3, 2, 3, 1, 5, 0, 3, 7, 3, 5, 9, 2, 0, 3, 7, 9, 8, 0, 2, 9, 9, 1, 1, 4, 8, 2, 8, 3, 0, 0, 5, 0, 1, 4, 4, 6, 8, 0, 3, 0, 4, 2, 9, 4
Offset: 1

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.

Examples

			1.398966325965906702031540539431998764673522563866238879930...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5+2*Sqrt[2]]/2,200]]

Formula

Digits of sqrt(5+2*sqrt(2))/2.

A179638 Decimal expansion of the volume of gyroelongated square pyramid with edge length 1.

Original entry on oeis.org

1, 1, 9, 2, 7, 0, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 5, 5, 9, 0, 6, 0, 1, 9, 8, 4, 2, 8, 3, 7, 7, 2, 5, 1, 5, 8, 1, 5, 5, 2, 6, 2, 5, 5, 1, 8, 2, 8, 8, 6, 2, 0, 1, 5, 7, 0, 7, 7, 9, 3, 1, 4, 2, 1, 8, 8, 8, 2, 2, 7, 4, 7, 2, 4, 5, 5, 2, 5, 8, 3, 8, 6, 3, 0, 8, 2, 0, 7, 7, 0, 6, 7, 0, 0, 1, 8, 1, 1, 7, 7, 4, 7, 6, 3, 8
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated square pyramid: 9 vertices, 20 edges, and 13 faces.

Examples

			1.19270224223223255906019842837725158155262551828862015707793142188822...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(Sqrt[2]+2*Sqrt[4+3*Sqrt[2]])/6,200]]

Formula

Digits of (sqrt(2)+2 sqrt(4+3 sqrt(2)))/6.

A384214 Decimal expansion of the volume of a gyroelongated square cupola with unit edge.

Original entry on oeis.org

6, 2, 1, 0, 7, 6, 5, 7, 9, 2, 0, 3, 9, 2, 0, 0, 0, 3, 6, 6, 5, 8, 2, 2, 8, 8, 3, 3, 4, 5, 9, 8, 0, 7, 3, 1, 6, 9, 6, 0, 1, 0, 0, 3, 2, 0, 9, 1, 3, 7, 4, 5, 1, 7, 8, 3, 6, 4, 1, 8, 1, 7, 0, 5, 4, 3, 7, 9, 9, 6, 0, 4, 6, 7, 0, 8, 9, 3, 8, 4, 9, 5, 9, 9, 9, 4, 2, 7, 1, 3
Offset: 1

Views

Author

Paolo Xausa, May 23 2025

Keywords

Comments

The gyroelongated square cupola is Johnson solid J_23.

Examples

			6.21076579203920003665822883345980731696010032091...
		

Crossrefs

Cf. A384215 (surface area).

Programs

  • Mathematica
    First[RealDigits[1 + Sqrt[8]/3 + 2/3*Sqrt[4 + Sqrt[8] + 2*Sqrt[146 + 103*Sqrt[2]]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J23", "Volume"], 10, 100]]

Formula

Equals 1 + (2/3)*sqrt(2) + (2/3)*sqrt(4 + 2*sqrt(2) + 2*sqrt(146 + 103*sqrt(2))) = 1 + A010466/3 + (2/3)*sqrt(4 + A010466 + 2*sqrt(146 + 103*A002193)).
Equals the largest real root of 6561*x^8 - 52488*x^7 + 113724*x^6 - 9720*x^5 - 1616922*x^4 + 396360*x^3 + 1537020*x^2 - 178632*x - 3391.
Showing 1-10 of 23 results. Next