cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A179694 Numbers of the form p^6*q^3 where p and q are distinct primes.

Original entry on oeis.org

1728, 5832, 8000, 21952, 85184, 91125, 125000, 140608, 250047, 314432, 421875, 438976, 778688, 941192, 970299, 1560896, 1601613, 1906624, 3176523, 3241792, 3581577, 4410944, 5000211, 5088448, 5359375, 6644672
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,6}; Select[Range[10^6], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\8)^(1/6), t=p^6;forprime(q=2, (lim\t)^(1/3), if(p==q, next);listput(v,t*q^3))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179694(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**6,3)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(3)*P(6) - P(9) = A085541 * A085966 - A085969 = 0.000978..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
a(n) = A054753(n)^3. - R. J. Mathar, May 05 2023

A179702 Numbers of the form p^4*q^5 where p and q are two distinct primes.

Original entry on oeis.org

2592, 3888, 20000, 50000, 76832, 151875, 253125, 268912, 468512, 583443, 913952, 1361367, 2576816, 2672672, 3557763, 4170272, 5940688, 6940323, 7503125, 8954912, 10504375, 13045131, 20295603, 22632992, 22717712, 29552672, 30074733
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A046312 and of A137493. - R. J. Mathar, Jul 27 2010

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Sort[Last /@ FactorInteger @n] == {4, 5}; Select[ Range@ 31668000, fQ] (* fixed by Robert G. Wilson v, Aug 26 2010 *)
    lst = {}; Do[ If[p != q, AppendTo[lst, Prime@p^4*Prime@q^5]], {p, 12}, {q, 10}]; Take[ Sort@ Flatten@ lst, 27] (* Robert G. Wilson v, Aug 26 2010 *)
    Take[Union[First[#]^4 Last[#]^5&/@Flatten[Permutations/@Subsets[ Prime[ Range[30]],{2}],1]],30] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/5), t=p^5;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179702(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(5) - P(9) = A085964 * A085965 - A085969 = 0.000748..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Edited and extended by Ray Chandler and R. J. Mathar, Jul 26 2010

A225228 Numbers with prime signatures (1,1,1) or (2,2,1) or (3,2,2).

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 180, 182, 186, 190, 195, 222, 230, 231, 238, 246, 252, 255, 258, 266, 273, 282, 285, 286, 290, 300, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 396, 399, 402, 406, 410, 418, 426, 429
Offset: 1

Views

Author

Reinhard Zumkeller, May 03 2013

Keywords

Comments

Union of A007304, A179643 and A179695; subsequence of A033992;
A001221(a(n)) = 3 and A051903(a(n)) <= A051904(a(n)) + 1 and A001222(a(n)) = 3 or 5 or 7;
A050326(a(n)) = 5.

Examples

			A007304(1) = 2*3*5 = 30, A206778(30,1..8)=[1,2,3,5,6,10,15,30]:
A050326(30) = #{30, 15*2, 10*3, 6*5, 5*3*2} = 5;
A179643(1) = 2^2*3^2*5 = 180, A206778(180,1..8)=[1,2,3,5,6,10,15,30]:
A050326(180) = #{30*6, 30*3*2, 15*6*2, 10*6*3, 6*5*3*2} = 5;
A179695(1) = 2^3*3^2*5^2 = 1800, A206778(1800,1..8)=[1,2,3,5,6,10,15,30]:
A050326(1800) = #{30*10*6, 30*6*5*2, 30*10*3*2, 15*10*6*2, 10*6*5*3*2} = 5.
		

Crossrefs

Cf. A124010.

Programs

  • Haskell
    a225228 n = a225228_list !! (n-1)
    a225228_list = filter f [1..] where
       f x = length es == 3 && sum es `elem` [3,5,7] &&
                               maximum es - minimum es <= 1
             where es = a124010_row x
    
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2]~)); f==[1,1,1] || f==[1,2,2] || f==[2,2,3] \\ Charles R Greathouse IV, Jul 28 2016

Formula

a(n) ~ 2n log n / (log log n)^2. - Charles R Greathouse IV, Jul 28 2016

A275387 Numbers of ordered pairs of divisors d < e of n such that gcd(d, e) > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 6, 0, 8, 0, 8, 2, 2, 0, 18, 1, 2, 3, 8, 0, 15, 0, 10, 2, 2, 2, 24, 0, 2, 2, 18, 0, 15, 0, 8, 8, 2, 0, 32, 1, 8, 2, 8, 0, 18, 2, 18, 2, 2, 0, 44, 0, 2, 8, 15, 2, 15, 0, 8, 2, 15, 0, 49, 0, 2, 8, 8, 2, 15, 0, 32, 6, 2
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2016

Keywords

Comments

Number of elements in the set {(x, y): x|n, y|n, x < y, gcd(x, y) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n)=0 if n prime;
a(n)=1 if n = p^2 for p prime (A001248);
a(n)=2 if n is a squarefree semiprime (A006881);
a(n)=3 if n = p^3 for p prime (A030078);
a(n)=6 if n = p^4 for p prime (A030514);
a(n)=8 if n is a number which is the product of a prime and the square of a different prime (A054753);
a(n)=10 if n = p^5 for p prime (A050997);
a(n)=15 if n is in the set {A007304} union {64} = {30, 42, 64, 66, 70,...} = {Sphenic numbers} union {64};
a(n)=18 if n is the product of the cube of a prime (A030078) and a different prime (see A065036);
a(n)=21 if n = p^7 for p prime (A092759);
a(n)=24 if n is square of a squarefree semiprime (A085986);
a(n)=32 if n is the product of the 4th power of a prime (A030514) and a different prime (see A178739);
a(n)=36 if n = p^9 for p prime (A179665);
a(n)=44 if n is the product of exactly four primes, three of which are distinct (A085987);
a(n)=45 if n is a number with 11 divisors (A030629);
a(n)=49 if n is of the form p^2*q^3, where p,q are distinct primes (A143610);
a(n)=50 if n is the product of the 5th power of a prime (A050997) and a different prime (see A178740);
a(n)=55 if n if n = p^11 for p prime(A079395);
a(n)=72 if n is a number with 14 divisors (A030632);
a(n)=80 if n is the product of four distinct primes (A046386);
a(n)=83 if n is a number with 15 divisors (A030633);
a(n)=89 if n is a number with prime factorization pqr^3 (A189975);
a(n)=96 if n is a number that are the cube of a product of two distinct primes (A162142);
a(n)=98 if n is the product of the 7th power of a prime and a distinct prime (p^7*q) (A179664);
a(n)=116 if n is the product of exactly 2 distinct squares of primes and a different prime (p^2*q^2*r) (A179643);
a(n)=126 if n is the product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2) (A179646);
a(n)=128 if n is the product of the 8th power of a prime and a distinct prime (p^8*q) (A179668);
a(n)=150 if n is the product of the 4th power of a prime and 2 different distinct primes (p^4*q*r) (A179644);
a(n)=159 if n is the product of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3) (A179666).
It is possible to continue with a(n) = 162, 178, 209, 224, 227, 238, 239, 260, 289, 309, 320, 333,...

Examples

			a(12) = 8 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j)>1 for the 8 following pairs of divisors: (2,4), (2,6), (2,12), (3,6), (3,12), (4,6), (4,12) and (6,12).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    x:=divisors(n):n0:=nops(x):it:=0:
    for i from 1 to n0 do:
      for j from i+1 to n0 do:
       if gcd(x[i],x[j])>1
        then
        it:=it+1:
        else
       fi:
      od:
    od:
      printf(`%d, `,it):
    od:
  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2021 *)
  • PARI
    a(n)=my(d=divisors(n)); sum(i=2,#d, sum(j=1,i-1, gcd(d[i],d[j])>1)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    a(n)=my(f=factor(n)[,2],t=prod(i=1,#f,f[i]+1)); t*(t-1)/2 - (prod(i=1,#f,2*f[i]+1)+1)/2 \\ Charles R Greathouse IV, Aug 03 2016

Formula

a(n) = A066446(n) - A063647(n).
a(n) = Sum_{d1|n, d2|n, d1Wesley Ivan Hurt, Jan 01 2021

A336615 Numbers of the form p * m^2, where p is prime and m > 0 is not divisible by p.

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 112, 113, 116, 117, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 162
Offset: 1

Views

Author

Amiram Eldar, Jul 27 2020

Keywords

Comments

Numbers k such that A008833(k) is a unitary divisor of k and A007913(k) = k / A008833(k) is a prime number.

Crossrefs

Intersection of A229125 and A335275.
Subsequences: A000040, A054753, A179643.

Programs

  • Mathematica
    Select[Range[2, 200], Select[FactorInteger[#][[;;, 2]], OddQ] == {1} &]
  • Python
    from math import isqrt
    from sympy import primepi, primefactors
    def A336615(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(m:=x//y**2)-sum(1 for p in primefactors(y) if p<=m) for y in range(1,isqrt(x)+1))
        return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025

Formula

The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962).

A275345 Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.

Original entry on oeis.org

1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
Offset: 0

Views

Author

Mats Granvik, Jul 24 2016

Keywords

Comments

From Mats Granvik, Sep 30 2017: (Start)
Conjecture: The largest absolute value of the eigenvalues of these characteristic polynomials appear to have the same prime signature in the factorization of the matrix sizes N.
In other words: Let b(N) equal the sequence of the largest absolute values of the eigenvalues of the characteristic polynomials of the matrices of size N. b(N) is then a sequence of truncated eigenvalues starting:
b(N=1..infinity)
= 1.00000, 1.61803, 1.61803, 2.00000, 1.61803, 2.20557, 1.61803, 2.32472, 2.00000, 2.20557, 1.61803, 2.67170, 1.61803, 2.20557, 2.20557, 2.61803, 1.61803, 2.67170, 1.61803, 2.67170, 2.20557, 2.20557, 1.61803, 3.08032, 2.00000, 2.20557, 2.32472, 2.67170, 1.61803, 2.93796, 1.61803, 2.89055, 2.20557, 2.20557, 2.20557, 3.21878, 1.61803, 2.20557, 2.20557, 3.08032, 1.61803, 2.93796, 1.61803, 2.67170, 2.67170, 2.20557, 1.61803, 3.45341, 2.00000, 2.67170, 2.20557, 2.67170, 1.61803, 3.08032, 2.20557, 3.08032, 2.20557, 2.20557, 1.61803, 3.53392, 1.61803, 2.20557, 2.67170, ...
It then appears that for n = 1,2,3,4,5,...,infinity we have the table:
Prime signature: b(Axxxxxx(n)) = Largest abs(eigenvalue):
p^0 : b(1) = 1.0000000000000000000000000000...
p : b(A000040(n)) = 1.6180339887498949025257388711...
p^2 : b(A001248(n)) = 2.0000000000000000000000000000...
p*q : b(A006881(n)) = 2.2055694304005917238953315973...
p^3 : b(A030078(n)) = 2.3247179572447480566665944934...
p^2*q : b(A054753(n)) = 2.6716998816571604358216518448...
p^4 : b(A030514(n)) = 2.6180339887498917939012699207...
p^3*q : b(A065036(n)) = 3.0803227214906021558249449299...
p*q*r : b(A007304(n)) = 2.9379558827528557962693867011...
p^5 : b(A050997(n)) = 2.8905508875432590620846440288...
p^2*q^2 : b(A085986(n)) = 3.2187765853016649941764626419...
p^4*q : b(A178739(n)) = 3.4534111136673804054453285061...
p^2*q*r : b(A085987(n)) = 3.5339198574905377192578725953...
p^6 : b(A030516(n)) = 3.1478990357047909043330946587...
p^3*q^2 : b(A143610(n)) = 3.7022736187975437971431347250...
p^5*q : b(A178740(n)) = 3.8016448153137023524550386355...
p^3*q*r : b(A189975(n)) = 4.0600260453688532535920785448...
p^7 : b(A092759(n)) = 3.3935083220984414431597997463...
p^4*q^2 : b(A189988(n)) = 4.1453038440113498808159420150...
p^2*q^2*r: b(A179643(n)) = 4.2413382309993874486053755390...
p^6*q : b(A189987(n)) = 4.1311805192254587026923218218...
p*q*r*s : b(A046386(n)) = 3.8825338629275134572083061357...
...
b(Axxxxxx(1)) in the sequences above, is given by A025487.
(End)
First column in the coefficients of the characteristic polynomials is the Möbius function A008683.
Row sums of coefficients start: 0, -1, 0, 0, 0, 0, 0, 0, 0, ...
Third diagonal is a signed version of A000096.
Most of the eigenvalues are equal to 1. The number of eigenvalues equal to 1 are given by A075795 for n>1.
The first three of the eigenvalues above can be calculated as nested radicals. The fourth eigenvalue 2.205569430400590... minus 1 = 1.205569430400590... is also a nested radical.

Examples

			{
{ 1},
{ 1, -1},
{-1, -1,  1},
{-1,  0,  2,  -1},
{ 0,  0,  2,  -3,  1},
{-1,  2,  1,  -5,  4,   -1},
{ 1, -3,  5,  -8,  9,   -5,   1},
{-1,  4, -4,  -5, 15,  -14,   6,  -1},
{ 0, -1,  6, -17, 29,  -31,  20,  -7,  1},
{ 0,  0,  2, -13, 36,  -55,  50, -27,  8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
		

Crossrefs

Programs

  • Mathematica
    Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]

A375144 Numbers whose prime factorization has exactly two exponents that equal 2 and has no higher exponents.

Original entry on oeis.org

36, 100, 180, 196, 225, 252, 300, 396, 441, 450, 468, 484, 588, 612, 676, 684, 700, 828, 882, 980, 1044, 1089, 1100, 1116, 1156, 1225, 1260, 1300, 1332, 1444, 1452, 1476, 1521, 1548, 1575, 1692, 1700, 1900, 1908, 1980, 2028, 2100, 2116, 2124, 2156, 2178, 2196
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Numbers of the form m * p^2 * q^2, where p < q are primes, and m is a squarefree number such that gcd(m, p*q) = 1.
Numbers whose powerful part (A057521) is a square of a squarefree semiprime (A085986).
The asymptotic density of this sequence is ((Sum_{p prime} 1/(p*(p+1)))^2 - Sum_{p prime} 1/(p*(p+1))^2)/(2*zeta(2)) = 0.022124574473271163980012... .

Examples

			36 = 2^2 * 3^2 is a term since its prime factorization has exactly two exponents and both are equal to 2.
		

Crossrefs

Subsequence: A179643.

Programs

  • Mathematica
    q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]], Greater]}, Length[e] > 1 && e[[1;;2]] == {2, 2} && If[Length[e] > 2, e[[3]] == 1, True]]; Select[Range[2200], q]
  • PARI
    is(k) = {my(e = vecsort(factor(k)[,2], , 4)~); #e > 1 && e[1..2] == [2,2] && if(#e > 2, e[3] == 1, 1);}

A369209 Numbers whose number of divisors has the largest prime factor 3.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 32, 36, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 96, 98, 99, 100, 108, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 160, 164, 169, 171, 172, 175, 180, 188, 196, 198, 200, 204, 207, 212, 220, 224, 225, 228
Offset: 1

Views

Author

Amiram Eldar, Jan 16 2024

Keywords

Comments

Subsequence of A059269 and first differs from it at n = 36: A059269(136) = 44 has 15 = 3 * 5 divisors and thus is not a term of this sequence.
Numbers k such that A000005(k) is in A065119.
Numbers k such that A071188(k) = 3.
Equals the complement of A354181, without the terms of A036537 (i.e., complement(A354181) \ A036537).
The asymptotic density of this sequence is Product_{p prime} (1-1/p) * (Sum_{k>=1} 1/p^(A003586(k)-1)) - A327839 = 0.26087647470200496716... .

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; Select[Range[300], gpf[DivisorSigma[0, #]] == 3 &]
  • PARI
    gpf(n) = if(n == 1, 1, vecmax(factor(n)[, 1]));
    is(n) = gpf(numdiv(n)) == 3;

A382208 Numbers k for which pi(bigomega(k)) = omega(k).

Original entry on oeis.org

1, 4, 9, 12, 18, 20, 24, 25, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 63, 68, 75, 76, 88, 92, 98, 99, 100, 104, 116, 117, 120, 121, 124, 135, 136, 147, 148, 152, 153, 164, 168, 169, 171, 172, 175, 180, 184, 188, 189, 196, 207, 212, 225, 232, 236, 240, 242, 244, 245
Offset: 1

Views

Author

Felix Huber, Mar 30 2025

Keywords

Comments

Numbers k for which A000720(A001222(k)) = A001221(k).
Numbers k = p_1^e_1 * ... * p_j^e_j for which pi(Sum_{i=1..j} e_i) = j where pi = A000720.

Examples

			240 = 2^4*3*5 is in the sequence because pi(Omega(240)) = pi(6) = 3 = omega(240).
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A382208:=proc(n)
        option remember;
        local k;
        if n=1 then
            1
        else
            for k from procname(n-1)+1 do
                if pi(Omega(k))=Omega(k,distinct) then
                    return k
                fi
            od
        fi;
    end proc;
    seq(A382208(n),n=1..59);
    # second Maple program:
    q:= n-> (l-> is(numtheory[pi](add(i[2], i=l))=nops(l)))(ifactors(n)[2]):
    select(q, [$1..245])[];  # Alois P. Heinz, Apr 05 2025
  • Mathematica
    Select[Range[250], PrimePi[PrimeOmega[#]] == PrimeNu[#] &] (* Amiram Eldar, Apr 05 2025 *)
  • PARI
    isok(k) = primepi(bigomega(k)) == omega(k); \\ Michel Marcus, Apr 05 2025

Extensions

a(1) inserted by Michel Marcus, Apr 05 2025

A258617 a(n) = (4*n+8)*n^2.

Original entry on oeis.org

0, 12, 64, 180, 384, 700, 1152, 1764, 2560, 3564, 4800, 6292, 8064, 10140, 12544, 15300, 18432, 21964, 25920, 30324, 35200, 40572, 46464, 52900, 59904, 67500, 75712, 84564, 94080, 104284, 115200, 126852, 139264, 152460, 166464, 181300, 196992, 213564
Offset: 0

Views

Author

Garrett Frandson, Jun 05 2015

Keywords

Comments

Let r be a natural number such that r has 17 proper divisors and 5 prime factors (note that these prime factors do not have to be distinct). The difference between these two values, say d(r), is in this case 12. Where n is a positive integer, d(r^n)=(4*n+8)*n^2.
The integers that satisfy the proper-divisor-prime-factor requirement are those of A179643.

Examples

			The smallest integer that satisfies the (17, 5) requirement is 180: it has 17 proper divisors (1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90) and 5 prime factors (2, 2, 3, 3, 5), so d(120)=12=a(1).
The square of 180, 32400, we would expect to have a difference of 64 between the number of its proper divisors and prime factors, and with respectively 74 and 10, d(32400)=64=a(2) indeed. Checking this with further integer powers of 180 will continue to generate terms in this sequence.
		

Crossrefs

Programs

  • Magma
    [(4*n+8)*n^2: n in [0..50]]; // Vincenzo Librandi, Jun 06 2015
    
  • Magma
    I:=[0, 12, 64, 180]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 06 2015
    
  • Mathematica
    Table[(4 n + 8) n^2, {n, 0, 40}] (* or *) CoefficientList[Series[4 x (3 + 4 x - x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2015 *)
  • PARI
    vector(50,n,n--;(4*n+8)*n^2) \\ Derek Orr, Jun 21 2015

Formula

a(n) = 4*A152618(n+1).
G.f.: 4*x*(3+4*x-x^2)/(1-x)^4. - Vincenzo Librandi, Jun 06 2015
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Jun 06 2015
For any m, let x=A179643(m), then a(n) = A000005(x^n) - A001222(x^n). - Michel Marcus, Jul 09 2015

Extensions

More terms from Vincenzo Librandi, Jun 06 2015
Previous Showing 11-20 of 20 results.