cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A193173 Triangle in which n-th row lists the number of elements in lexicographically ordered partitions of n, A026791.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1, 7, 6, 5, 5, 4, 4, 3, 4, 3, 3, 2, 3, 2, 2, 1, 8, 7, 6, 6, 5, 5, 4, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 2, 2, 1, 9, 8, 7, 7, 6, 6, 5, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 10, 9, 8, 8, 7, 7, 6, 7, 6
Offset: 1

Views

Author

Alois P. Heinz, Jul 17 2011

Keywords

Comments

This sequence first differs from A049085 in the partitions of 6 (at flattened index 22):
6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1 (this sequence);
6, 5, 4, 3, 4, 3, 2, 3, 2, 2, 1 (A049085).
- Jason Kimberley, Oct 27 2011
Rows sums give A006128, n >= 1. - Omar E. Pol, Dec 06 2011
The name is correct if the partitions are read in reverse, so that the parts are weakly increasing. The version for non-reversed partitions is A049085.

Examples

			The lexicographically ordered partitions of 3 are [[1, 1, 1], [1, 2], [3]], thus row 3 has 3, 2, 1.
Triangle begins:
  1;
  2, 1;
  3, 2, 1;
  4, 3, 2, 2, 1;
  5, 4, 3, 3, 2, 2, 1;
  6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1;
  ...
		

Crossrefs

Row lengths are A000041.
Partition lengths of A026791.
The version ignoring length is A036043.
The version for non-reversed partitions is A049085.
The maxima of these partitions are A194546.
Reversed partitions in Abramowitz-Stegun order are A036036.
Reverse-lexicographically ordered partitions are A080577.

Programs

  • Maple
    T:= proc(n) local b, ll;
          b:= proc(n,l)
                if n=0 then ll:= ll, nops(l)
                else seq(b(n-i, [l[], i]), i=`if`(l=[], 1, l[-1])..n) fi
              end;
          ll:= NULL; b(n, []); ll
        end:
    seq(T(n), n=1..11);
  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Length/@Sort[Reverse/@IntegerPartitions[n],lexsort],{n,0,10}] (* Gus Wiseman, May 22 2020 *)

A331581 Maximum part of the n-th integer partition in graded reverse-lexicographic order (A080577); a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 08 2020

Keywords

Comments

The first partition ranked by A080577 is (); there is no zeroth partition.

Examples

			The sequence of all partitions in graded reverse-lexicographic order begins as follows. The terms are the initial parts.
  ()         (3,2)        (2,1,1,1,1)    (2,2,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)  (2,1,1,1,1,1)
  (2)        (2,2,1)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (2,1,1,1)    (6,1)          (8)
  (3)        (1,1,1,1,1)  (5,2)          (7,1)
  (2,1)      (6)          (5,1,1)        (6,2)
  (1,1,1)    (5,1)        (4,3)          (6,1,1)
  (4)        (4,2)        (4,2,1)        (5,3)
  (3,1)      (4,1,1)      (4,1,1,1)      (5,2,1)
  (2,2)      (3,3)        (3,3,1)        (5,1,1,1)
  (2,1,1)    (3,2,1)      (3,2,2)        (4,4)
  (1,1,1,1)  (3,1,1,1)    (3,2,1,1)      (4,3,1)
  (5)        (2,2,2)      (3,1,1,1,1)    (4,2,2)
  (4,1)      (2,2,1,1)    (2,2,2,1)      (4,2,1,1)
Triangle begins:
  0
  1
  2 1
  3 2 1
  4 3 2 2 1
  5 4 3 3 2 2 1
  6 5 4 4 3 3 3 2 2 2 1
  7 6 5 5 4 4 4 3 3 3 3 2 2 2 1
  8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1
		

Crossrefs

Row lengths are A000041.
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
The version for compositions is A065120 or A333766.
Reverse-lexicographically ordered partitions are A080577.
Distinct parts of these partitions are counted by A115623.
Lexicographically ordered partitions are A193073.
Colexicographically ordered partitions are A211992.
Lengths of these partitions are A238966.

Programs

  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Prepend[First/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,8}],0]

Formula

a(n) = A061395(A129129(n - 1)).

A344086 Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 4, 3, 2, 4, 1, 5, 3, 2, 1, 4, 2, 5, 1, 6, 4, 2, 1, 4, 3, 5, 2, 6, 1, 7, 4, 3, 1, 5, 2, 1, 5, 3, 6, 2, 7, 1, 8, 4, 3, 2, 5, 3, 1, 5, 4, 6, 2, 1, 6, 3, 7, 2, 8, 1, 9, 4, 3, 2, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 6, 4, 7, 2, 1, 7, 3, 8, 2, 9, 1, 10
Offset: 0

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (21)(3)
  4: (31)(4)
  5: (32)(41)(5)
  6: (321)(42)(51)(6)
  7: (421)(43)(52)(61)(7)
  8: (431)(521)(53)(62)(71)(8)
  9: (432)(531)(54)(621)(63)(72)(81)(9)
		

Crossrefs

Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of lex gives A118457.
The not necessarily strict version is A193073.
The version for reversed partitions is A246688.
The Heinz numbers of these partitions grouped by sum are A246867.
The ordered generalization is A339351.
Taking colex instead of lex gives A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts reversed strict partitions by Heinz number.
A329631 sorts strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}]

A333483 Sort all positive integers, first by sum of prime indices (A056239), then by number of prime indices (A001222).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 14, 15, 18, 20, 24, 32, 13, 21, 22, 25, 27, 28, 30, 36, 40, 48, 64, 17, 26, 33, 35, 42, 44, 45, 50, 54, 56, 60, 72, 80, 96, 128, 19, 34, 39, 49, 55, 52, 63, 66, 70, 75, 81, 84, 88, 90, 100, 108, 112, 120, 144, 160, 192, 256, 23, 38, 51, 65, 77, 68, 78, 98, 99, 105, 110, 125, 104, 126, 132, 135, 140, 150, 162, 168, 176, 180, 200, 216, 224, 240, 288, 320, 384, 512
Offset: 0

Views

Author

Gus Wiseman, May 10 2020

Keywords

Comments

A refinement of A215366, from which it first differs at a(49) = 55, A215366(49) = 52.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  14  15  18  20  24  32
  13  21  22  25  27  28  30  36  40  48  64
  17  26  33  35  42  44  45  50  54  56  60  72  80  96 128
		

Crossrefs

Row lengths are A000041.
Ignoring length gives A215366 (graded Heinz numbers).
Sorting by decreasing length gives A333484.
Finally sorting lexicographically by prime indices gives A185974.
Finally sorting colexicographically by prime indices gives A334433.
Finally sorting reverse-lexicographically by prime indices gives A334435.
Finally sorting reverse-colexicographically by prime indices gives A334438.
Number of prime indices is A001222.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in (sum/length/colex) order are A036037.
Sum of prime indices is A056239.
Sorting reversed partitions by Heinz number gives A112798.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    Join@@@Table[Sort[Times@@Prime/@#&/@IntegerPartitions[n,{k}]],{n,0,8},{k,0,n}]

A333485 Heinz numbers of all integer partitions sorted first by sum, then by decreasing length, and finally lexicographically. A code for the Fenner-Loizou tree A228100.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 15, 14, 11, 64, 48, 36, 40, 27, 30, 28, 25, 21, 22, 13, 128, 96, 72, 80, 54, 60, 56, 45, 50, 42, 44, 35, 33, 26, 17, 256, 192, 144, 160, 108, 120, 112, 81, 90, 100, 84, 88, 75, 63, 70, 66, 52, 49, 55, 39, 34, 19
Offset: 0

Views

Author

Gus Wiseman, May 11 2020

Keywords

Comments

A permutation of the positive integers.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), which gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              11: {5}                 56: {1,1,1,4}
    2: {1}             64: {1,1,1,1,1,1}       45: {2,2,3}
    4: {1,1}           48: {1,1,1,1,2}         50: {1,3,3}
    3: {2}             36: {1,1,2,2}           42: {1,2,4}
    8: {1,1,1}         40: {1,1,1,3}           44: {1,1,5}
    6: {1,2}           27: {2,2,2}             35: {3,4}
    5: {3}             30: {1,2,3}             33: {2,5}
   16: {1,1,1,1}       28: {1,1,4}             26: {1,6}
   12: {1,1,2}         25: {3,3}               17: {7}
    9: {2,2}           21: {2,4}              256: {1,1,1,1,1,1,1,1}
   10: {1,3}           22: {1,5}              192: {1,1,1,1,1,1,2}
    7: {4}             13: {6}                144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}    128: {1,1,1,1,1,1,1}    160: {1,1,1,1,1,3}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      108: {1,1,2,2,2}
   18: {1,2,2}         72: {1,1,1,2,2}        120: {1,1,1,2,3}
   20: {1,1,3}         80: {1,1,1,1,3}        112: {1,1,1,1,4}
   15: {2,3}           54: {1,2,2,2}           81: {2,2,2,2}
   14: {1,4}           60: {1,1,2,3}           90: {1,2,2,3}
The triangle begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  15  14  11
   64  48  36  40  27  30  28  25  21  22  13
  128  96  72  80  54  60  56  45  50  42  44  35  33  26  17
		

Crossrefs

Row lengths are A000041.
The constructive version is A228100.
Sorting by increasing length gives A334433.
The version with rows reversed is A334438.
Sum of prime indices is A056239.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Lexicographically ordered partitions are A193073.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
If the fine ordering is by Heinz number instead of lexicographic we get A333484.

Programs

  • Mathematica
    ralensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]>Length[c],OrderedQ[{f,c}]];
    Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],ralensort],{n,0,8}]

Formula

A001221(a(n)) = A115623(n).
A001222(a(n - 1)) = A331581(n).
A061395(a(n > 1)) = A128628(n).

Extensions

Name extended by Peter Luschny, Dec 23 2020

A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

First differs from the revlex (instead of colex) version for partitions of 12.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(12)
  4: (4)(13)
  5: (5)(23)(14)
  6: (6)(24)(15)(123)
  7: (7)(34)(25)(16)(124)
  8: (8)(35)(26)(17)(134)(125)
  9: (9)(45)(36)(27)(18)(234)(135)(126)
		

Crossrefs

Positions of first appearances are A015724 plus one.
Taking lex instead of colex gives A026793 (non-reversed: A118457).
Triangle sums are A066189.
Reversing all partitions gives A344090.
The non-strict version is A344091.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.

Programs

  • Mathematica
    Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]

A335123 Minimum part of the n-th integer partition in Abramowitz-Stegun order (sum/length/lex); a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 6, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 7, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 3, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 24 2020

Keywords

Examples

			Triangle begins:
  0
  1
  2 1
  3 1 1
  4 2 1 1 1
  5 2 1 1 1 1 1
  6 3 2 1 2 1 1 1 1 1 1
  7 3 2 1 2 1 1 1 1 1 1 1 1 1 1
  8 4 3 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
		

Crossrefs

Row lengths are A000041.
Partition minima of A334301.
The length of the same partition is A036043.
The Heinz number of the same partition is A334433.
The number of distinct parts in the same partition is A334440.
The maximum of the same partition is A334441.
The version for reversed partitions is A335124.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Table[If[n==0,{0},Min/@Sort[IntegerPartitions[n]]],{n,0,8}]

Formula

a(n) = A055396(A334433(n)).

A335124 Minimum part of the n-th reversed integer partition in Abramowitz-Stegun order; a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 1, 1, 1, 1, 6, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 7, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 2, 3, 4, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 9, 1, 2, 3, 4, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 24 2020

Keywords

Comments

The ordering of reversed partitions is first by sum, then by length, and finally lexicographically. The version for non-reversed partitions is A335123.

Examples

			Triangle begins:
  0
  1
  2 1
  3 1 1
  4 1 2 1 1
  5 1 2 1 1 1 1
  6 1 2 3 1 1 2 1 1 1 1
  7 1 2 3 1 1 1 2 1 1 1 1 1 1 1
  8 1 2 3 4 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1
		

Crossrefs

Row lengths are A000041.
Partition minima of A036036.
The length of the same partition is A036043.
The maximum of the same partition is A049085.
The number of distinct parts in the same partition is A103921.
The Heinz number of the same partition is A185974.
The version for non-reversed partitions is A335123.
Lexicographically ordered reversed partitions are A026791.
Partitions in (sum/length/colex) order are A036037.
Partitions in opposite Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Table[If[n==0,{0},Min/@Sort[Reverse/@IntegerPartitions[n]]],{n,0,8}]

Formula

a(n) = A055396(A185974(n)).

A344085 Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

Differs from A339195 in having 77 before 66.

Examples

			Triangle begins:
   1
   2
   3   6
   5  10  15  30
   7  14  21  35  42  70 105 210
		

Crossrefs

Programs

  • Mathematica
    nn=4;
    GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]

A122172 Triangle read by rows relating A074139, A074141, A078436 and A079025.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 5, 3, 1, 1, 4, 7, 7, 4, 1, 1, 5, 10, 10, 5, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alford Arnold, Aug 23 2006

Keywords

Comments

A proper definition is needed for this sequence.
Are the row sums A074139(n) and the row lengths A000041(n)? - R. J. Mathar, May 08 2019 [Not exactly: see below. - M. F. Hasler, Jan 07 2024]
From M. F. Hasler, Jan 06 2024: (Start)
I get this triangle as T(n,k) = # { v in S(p_n), |v| = k }, where p_n is the n-th partition as listed in A036036 or A036037 (which has a nice table of the p's), and S(p) = {0, ..., p[1]} x ... x {0, ..., p[#p]}, the set of vectors v with 0 <= v[i] <= p[i] for all indices i from 1 to #p = number of parts in p.
Then the row sums are indeed the total number of elements in S(p_n) which is equal to the product (p[1]+1)*...*(p[#p]+1) which is also the number of divisors of the Heinz number of p (cf. A185974).
The row lengths are 1 + |p| = 1 + sum of all parts of p (corresponding to the possible values of |v| ranging from 0 to |p|), repeated A000041(|p|) times: A000041(0) = 1 row of length 0+1 for the partition () of 0, A000041(1) = 1 row of length 1+1 for partition (1) of 1; A000041(2) = 2 rows of length 2+1 for the two partitions (2) and (1,1) of 2; A000041(3) = 3 rows of length 3+1 for the 3 partitions {(3), (2,1), (1,1,1)} of 3; etc. (End)

Examples

			The triangle begins:
  1
  1 1
  1 1 1
  1 2 1
  1 1 1 1
  1 2 2 1
  1 3 3 1
  1 1 1 1 1
  1 2 2 2 1
  1 2 3 2 1
  1 3 4 3 1
  1 4 6 4 1
  1 1 1 1 1 1
  1 2 2 2 2 1
  1 2 3 3 2 1
  1 3 4 4 3 1
  1 3 5 5 3 1
  1 4 7 7 4 1
  1 5 10 10 5 1
		

Crossrefs

Cf. A036036 (partitions in A-S order), A036037 (the same, parts reversed), A185974 (corresponding Heinz numbers).

Programs

  • PARI
    A122172_row(n, p=part(n))={my(c=Vec(0, vecsum(p)+1)); forvec(v=[[0, k]| k<-p], c[vecsum(v)+1]++); c} \\ instead of n one can directly give p as 2nd arg
    /* helper function: n-th partition as listed in A036036, A036037 or A185974 */
    part(n)={my(c, r=0); while(n >= c = numbpart(r), n -= c; r++); partitions(r)[n+1]}
    for(n=0,5, forpart(p=n, print(A122172_row(, Vec(p))) )) \\ Illustration. \\ M. F. Hasler, Jan 06 2024

Extensions

More terms from M. F. Hasler, Jan 07 2024
Previous Showing 21-30 of 40 results. Next