cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 61 results. Next

A188932 Decimal expansion of sqrt(7)+sqrt(8).

Original entry on oeis.org

5, 4, 7, 4, 1, 7, 8, 4, 3, 5, 8, 1, 0, 7, 8, 0, 6, 8, 8, 1, 0, 4, 9, 9, 3, 2, 0, 2, 0, 5, 8, 6, 5, 6, 5, 8, 2, 8, 4, 9, 6, 0, 2, 9, 3, 3, 8, 3, 6, 3, 4, 6, 3, 2, 6, 7, 2, 1, 6, 9, 3, 9, 3, 5, 1, 8, 2, 5, 3, 3, 7, 8, 0, 1, 5, 4, 4, 9, 7, 7, 0, 5, 4, 6, 1, 1, 6, 7, 9, 5, 5, 1, 2, 9, 8, 2, 6, 7, 5, 6, 0, 8, 5, 0, 9, 2, 2, 7, 0, 8, 0, 0, 3, 2, 2, 0, 5, 7, 1, 4, 5, 5, 9, 3, 2, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Apr 13 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a sqrt(28)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A sqrt(28)-extension rectangle matches the continued fraction [5,2,9,5,2,687,6,4,1,2,2,...] for the shape L/W=sqrt(7)+sqrt(8). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the sqrt(28)-extension rectangle, 5 squares are removed first, then 2 squares, then 9 squares, then 5 squares,..., so that the original rectangle of shape sqrt(7)+sqrt(8) is partitioned into an infinite collection of squares.

Examples

			5.47417843581078068810499320205865658284960293...
		

Crossrefs

Programs

  • Mathematica
    r = 28^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
    RealDigits[Sqrt[7]+Sqrt[8],10,150][[1]] (* Harvey P. Dale, Jun 07 2017 *)

A188935 Decimal expansion of (1+sqrt(37))/6.

Original entry on oeis.org

1, 1, 8, 0, 4, 6, 0, 4, 2, 1, 7, 1, 6, 3, 6, 9, 9, 4, 8, 1, 6, 6, 6, 1, 4, 0, 4, 0, 8, 6, 7, 0, 1, 1, 1, 7, 7, 0, 1, 4, 1, 6, 1, 6, 8, 2, 4, 6, 4, 4, 0, 1, 8, 6, 4, 4, 0, 3, 1, 9, 2, 1, 7, 4, 4, 1, 4, 3, 8, 8, 7, 8, 7, 5, 5, 3, 1, 5, 1, 7, 0, 6, 6, 3, 3, 8, 4, 4, 4, 0, 4, 6, 5, 9, 6, 4, 1, 4, 4, 3, 9, 0, 5, 1, 5, 5, 8, 5, 0, 1, 5, 0, 8, 5, 5, 1, 9, 3, 9, 5, 5, 5, 8, 9, 6, 7, 7, 1, 7, 9
Offset: 1

Views

Author

Clark Kimberling, Apr 13 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a (1/3)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A (1/3)-extension rectangle matches the continued fraction [1,5,1,1,5,1,1,5,1,1,5,...] for the shape L/W=(1+sqrt(37))/6. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the (1/3)-extension rectangle, 1 square is removed first, then 5 squares, then 1 square, then 1 square,..., so that the original rectangle of shape (1+sqrt(37))/6 is partitioned into an infinite collection of squares.

Examples

			1.1804604217163699481666140408670111770141616824644...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[37])/6, 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2011 *)

Formula

Equals exp(arcsinh(1/6)). - Amiram Eldar, Jul 04 2023

A224578 Decimal expansion of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 3, 2, 9, 4, 2, 2, 1, 6, 7, 9, 3, 6, 1, 7, 3, 5, 8, 1, 8, 7, 9, 4, 1, 7, 7, 6, 8, 1, 0, 5, 6, 3, 6, 2, 4, 4, 8, 0, 8, 4, 9, 5, 8, 3, 3, 2, 9, 2, 0, 0, 0, 8, 3, 0, 4, 4, 2, 6, 2, 1, 4, 6, 5, 7, 4, 2, 5, 8, 1, 9, 9, 6, 9, 1, 3, 2, 6, 1, 7, 8, 1, 2, 2, 7, 6, 7
Offset: 1

Views

Author

Paolo P. Lava, Apr 11 2013

Keywords

Comments

Decimal expansion of shape of a gamma-extension rectangle; see A188640 for definitions of shape and r-extension rectangle.
Specifically, for a gamma-extension rectangle, 1 square is removed first, then 3 squares, then 28 squares, then 13 squares, then 3 squares,...(see A224579), so that the original rectangle is partitioned into an infinite collection of squares.

Examples

			1.329422167936173581879417768105... = [gamma, gamma, gamma, ...]
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) + Sqrt(4 + EulerGamma(R)^2))/2; // G. C. Greubel, Aug 30 2018
  • Maple
    evalf((gamma+sqrt(4+gamma^2))/2,90);
  • Mathematica
    RealDigits[(EulerGamma + Sqrt[4 + EulerGamma^2])/2, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    Euler/2+sqrt(4+Euler^2)/2 \\ Charles R Greathouse IV, Dec 11 2013
    

A224579 Continued fraction of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 3, 28, 13, 3, 1, 2, 1, 1, 8, 3, 4, 3, 3, 15, 12, 5, 2, 8, 1, 24, 2, 3, 5, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 7, 12, 1, 1, 1, 3, 1, 1, 1, 2, 1, 107, 1, 3, 6, 1, 26, 121, 3, 2, 1, 1, 12, 117, 1, 2, 3, 7, 5, 41, 5, 1, 5, 1, 1, 2, 3, 1, 200, 1, 4, 3, 191, 1, 5, 3, 5
Offset: 0

Views

Author

Paolo P. Lava, Apr 11 2013

Keywords

Comments

Continued fraction of the constant in A224578.

Crossrefs

Cf. A001620, A188640, A224578 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction((EulerGamma(R) + Sqrt(4+EulerGamma(R)^2))/2); // G. C. Greubel, Aug 30 2018
  • Maple
    Digits:=200; a:=evalf(gamma,5000); evalf((a+sqrt(4+a^2))/2,1000);
    numtheory[cfrac](%,200,'quotients') ;
  • Mathematica
    ContinuedFraction[(EulerGamma+Sqrt[4+EulerGamma^2])/2, 100] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    default(realprecision, 100); contfrac((Euler + sqrt(4 + Euler^2))/2) \\ G. C. Greubel, Aug 30 2018
    

Extensions

Offset changed by Andrew Howroyd, Aug 08 2024

A320639 Decimal expansion of (C + sqrt(4 + C^2))/2, where C is the Catalan constant.

Original entry on oeis.org

1, 5, 5, 7, 8, 6, 8, 3, 5, 5, 8, 7, 6, 0, 2, 5, 5, 6, 7, 3, 0, 9, 8, 2, 3, 2, 4, 9, 1, 7, 7, 4, 0, 6, 9, 9, 0, 6, 9, 7, 1, 6, 4, 3, 1, 0, 8, 6, 0, 1, 3, 3, 6, 0, 2, 3, 2, 1, 4, 7, 9, 8, 0, 1, 4, 0, 5, 9, 5, 6, 7, 1, 1, 2, 7, 4, 4, 7, 4, 0, 4, 8, 3, 1, 9, 9, 0, 7, 7, 2, 5, 6, 6, 2, 0, 9, 2, 9, 4, 1, 5, 5, 9, 4, 5, 5, 2, 9, 9, 1, 3, 3, 3, 3, 9, 2, 3, 4, 3, 3, 7, 0, 4, 6, 6, 9, 5, 9, 0, 9, 4
Offset: 1

Views

Author

Paolo P. Lava, Oct 18 2018

Keywords

Comments

Decimal expansion of the shape of a Catalan-extension rectangle; see A188640 for definitions of shape and r-extension rectangle.
Specifically, for a Catalan-extension rectangle, 1 square is removed first, then 1 square, then 1 square again, then 3 squares, then 1 square, ... (see A320640), so that the original rectangle is partitioned into an infinite collection of squares.

Examples

			1.557868355876025567309823249177... = [Catalan, Catalan, Catalan, ...]
		

Crossrefs

Programs

  • Magma
    R:= RealField(200); (Catalan(R) + Sqrt(4 + Catalan(R)^2)) / 2; // Vincenzo Librandi, Oct 24 2018
  • Maple
    evalf((Catalan+sqrt(4+Catalan^2))/2,135);
  • Mathematica
    First@ RealDigits[(Catalan + Sqrt[4 + Catalan^2])/2, 10, 105] (* Michael De Vlieger, Oct 23 2018 *)
  • PARI
    (Catalan+sqrt(4+Catalan^2))/2 \\ Felix Fröhlich, Oct 23 2018
    

A320640 Continued fraction of (C + sqrt(4 + C^2))/2, where C is the Catalan constant.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 1, 3, 1, 1, 1, 7, 3, 8, 3, 3, 6, 1, 1, 1, 3, 10, 3, 1, 1, 1, 4, 4, 8, 6, 33, 8, 1, 4, 2, 2, 2, 38, 14, 2, 1, 1, 2, 1, 3, 18, 1, 10, 1, 23, 4, 2, 2, 4, 5, 4, 1, 1, 1, 3, 1, 1, 13, 1, 1, 3, 2, 1, 6, 2, 1, 1, 5, 16, 15, 2, 1, 4, 6, 120, 1, 1, 1
Offset: 0

Views

Author

Paolo P. Lava, Oct 18 2018

Keywords

Comments

Continued fraction of the constant in A320639.

Crossrefs

Cf. A006752, A188640, A320639 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField();  ContinuedFraction((Catalan(R) + Sqrt(4 + Catalan(R)^2))/2); // G. C. Greubel, Oct 31 2018
  • Maple
    Digits:=200: evalf((Catalan+sqrt(4+Catalan^2))/2, 1000):
    numtheory[cfrac](%, 200,'quotients') ;
  • Mathematica
    ContinuedFraction[(Catalan + Sqrt[4 + Catalan^2])/2, 84] (* Michael De Vlieger, Oct 23 2018 *)
  • PARI
    default(realprecision, 100); contfrac((Catalan+sqrt(4+Catalan^2))/2) \\ Michel Marcus, Oct 26 2018
    

Extensions

Offset changed by Andrew Howroyd, Aug 10 2024

A366599 Decimal expansion of arcsinh(e).

Original entry on oeis.org

1, 7, 2, 5, 3, 8, 2, 5, 5, 8, 8, 5, 2, 3, 1, 5, 0, 9, 3, 9, 4, 5, 0, 9, 7, 9, 7, 0, 4, 0, 4, 8, 8, 8, 7, 5, 6, 2, 7, 4, 5, 5, 7, 2, 7, 4, 6, 7, 2, 9, 3, 8, 6, 6, 8, 8, 1, 4, 2, 1, 1, 5, 5, 6, 7, 0, 8, 6, 8, 6, 2, 6, 8, 4, 7, 5, 8, 1, 7, 8, 3, 1, 8, 4, 0, 3, 8
Offset: 1

Views

Author

Kritsada Moomuang, Oct 14 2023

Keywords

Examples

			1.7253825588523150939450...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcSinh[E], 10, 100] [[1]]
  • PARI
    asinh(exp(1)) \\ Amiram Eldar, Oct 18 2023

Formula

Equals log(A188640). - Amiram Eldar, Oct 18 2023

A188723 Continued fraction of (Pi + sqrt(4 + Pi^2))/2.

Original entry on oeis.org

3, 2, 3, 4, 2, 3, 1, 1, 105, 1, 2, 1, 13, 5, 16, 1, 44, 1, 1, 4, 2, 1, 2, 3, 100, 4, 1, 1, 18, 4, 2, 2, 2, 8, 2, 5, 2, 2, 3, 7, 184, 1, 8, 6, 2, 6, 2, 1, 5, 1, 38, 1, 2, 1, 1, 1, 4, 2, 6, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 8, 1, 1, 2, 1, 3, 1, 2, 1, 10, 1, 6, 1, 3, 1, 1, 1, 1, 2, 2, 1, 7, 1, 11, 1, 6, 1, 2, 13, 35, 1, 5, 2, 2, 1, 1, 2, 8, 2, 6, 2, 3, 1, 1, 2, 5
Offset: 0

Views

Author

Clark Kimberling, Apr 09 2011

Keywords

Comments

Continued fraction of the constant in A188722.

Crossrefs

Cf. A000796, A188640, A188722 (decimal expansion).

Programs

  • Maple
    Digits := 100 ;
    (Pi+sqrt(4+Pi^2))/2 ;
    evalf(%) ;
    numtheory[cfrac](%,40,'quotients') ; # R. J. Mathar, Apr 11 2011
  • Mathematica
    r = Pi; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]

Extensions

Offset changed by Andrew Howroyd, Jul 07 2024

A188724 Decimal expansion of shape of a (Pi/2)-extension rectangle; shape = (1/4)*(Pi + sqrt(16 + Pi^2)).

Original entry on oeis.org

2, 0, 5, 6, 9, 5, 2, 4, 3, 8, 7, 1, 0, 9, 6, 5, 9, 0, 9, 3, 9, 6, 7, 8, 7, 9, 2, 4, 3, 7, 8, 8, 0, 7, 2, 5, 8, 5, 8, 8, 0, 9, 9, 1, 4, 1, 5, 4, 9, 7, 1, 7, 6, 2, 0, 4, 6, 7, 6, 4, 2, 6, 8, 3, 4, 1, 6, 1, 9, 5, 6, 5, 7, 6, 0, 3, 4, 1, 7, 4, 6, 1, 3, 2, 2, 1, 8, 2, 6, 6, 1, 4, 5, 7, 6, 5, 0, 2, 1, 5, 1, 8, 9, 6, 9, 9, 2, 5, 3, 9, 6, 2, 4, 2, 1, 0, 6, 6, 2, 4, 8, 0, 9, 8, 2, 4, 8, 8, 4, 1, 9, 8
Offset: 1

Views

Author

Clark Kimberling, Apr 09 2011

Keywords

Comments

See A188640 for definitions of shape and r-extension rectangle. Briefly, an r-extension rectangle is composed of two rectangles of shape r.
A (Pi/2)-extension rectangle matches the continued fraction [2,17,1,1,3,1,3,2,2,1637,1,210,7,...] of the shape L/W = (1/4)*(Pi + sqrt(16 + Pi^2)). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,...]. Specifically, for the (Pi/2)-extension rectangle, 2 squares are removed first, then 17 squares, then 1 square, then 1 square, then 3 squares, ..., so that the original rectangle is partitioned into an infinite collection of squares.

Examples

			2.0569524387109659093967879243788072585880991...
		

Crossrefs

Programs

  • Mathematica
    r = Pi/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]

Extensions

a(130) corrected by Georg Fischer, Jul 16 2021

A188731 Decimal expansion of (5+sqrt(41))/4.

Original entry on oeis.org

2, 8, 5, 0, 7, 8, 1, 0, 5, 9, 3, 5, 8, 2, 1, 2, 1, 7, 1, 6, 2, 2, 0, 5, 4, 4, 1, 8, 6, 5, 5, 4, 5, 3, 3, 1, 6, 1, 3, 0, 1, 0, 5, 0, 3, 3, 1, 5, 5, 2, 5, 4, 7, 2, 1, 3, 8, 2, 3, 1, 8, 1, 5, 6, 6, 6, 7, 0, 4, 5, 6, 8, 9, 5, 4, 9, 2, 1, 9, 0, 1, 8, 5, 7, 2, 3, 3, 8, 5, 7, 5, 5, 6, 2, 4, 6, 7, 4, 9, 0, 7, 9, 2, 7, 0, 2, 9, 5, 8, 1, 2, 5, 9, 4, 9, 2, 9, 5, 8, 1, 5, 6, 1, 7, 4, 3, 6, 0, 9, 3
Offset: 1

Views

Author

Clark Kimberling, Apr 10 2011

Keywords

Comments

Decimal expansion of shape of a (5/2)-extension rectangle; see A188640 for definitions of shape and r-extension rectangle. Briefly, shape=length/width, and an r-extension rectangle is composed of two rectangles of shape r.
The continued fractions of the constant are 2, 1, 5, 1, 2, 2, 1, 5, 1, 2, 2, 1, 5, 1, 2, 2, 1, 5, 1...

Examples

			2.850781059358212171622054418655453316130105033155254721...
		

Crossrefs

Cf. A188640.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (5+Sqrt(41))/4; // G. C. Greubel, Nov 01 2018
  • Maple
    evalf((5+sqrt(41))/4,140); # Muniru A Asiru, Nov 01 2018
  • Mathematica
    r = 5/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
  • PARI
    default(realprecision, 100); (5+sqrt(41))/4 \\ G. C. Greubel, Nov 01 2018
    
Previous Showing 31-40 of 61 results. Next