cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A010014 a(0) = 1, a(n) = 24*n^2 + 2 for n>0.

Original entry on oeis.org

1, 26, 98, 218, 386, 602, 866, 1178, 1538, 1946, 2402, 2906, 3458, 4058, 4706, 5402, 6146, 6938, 7778, 8666, 9602, 10586, 11618, 12698, 13826, 15002, 16226, 17498, 18818, 20186, 21602, 23066, 24578, 26138, 27746, 29402, 31106, 32858, 34658, 36506, 38402, 40346
Offset: 0

Views

Author

Keywords

Comments

Number of points of L_infinity norm n in the simple cubic lattice Z^3. - N. J. A. Sloane, Apr 15 2008
Numbers of cubes needed to completely "cover" another cube. - Xavier Acloque, Oct 20 2003
First bisection of A005897. After 1, all terms are in A000408. - Bruno Berselli, Feb 06 2012

Crossrefs

Cf. A206399.

Programs

  • Mathematica
    Join[{1}, 24 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
  • PARI
    a(n) = if (n==0, 1, 24*n^2 + 2);
    vector(40, n, a(n-1)) \\ Altug Alkan, Sep 29 2015

Formula

a(n) = (2*n+1)^3 - (2*n-1)^3 for n >= 1. - Xavier Acloque, Oct 20 2003
G.f.: (1+x)*(1+22*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
a(n) = (2*n-1)^2 + (2*n+1)^2 + (4*n)^2 for n>0. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*24+2)*exp(x)-1. - Gopinath A. R., Feb 14 2012
a(n) = A005899(n) + A195322(n), n > 0. - R. J. Cano, Sep 29 2015
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(3)/24*Pi*coth(Pi*sqrt(3)/6) = 1.065052868574... - R. J. Mathar, May 07 2024
a(n) = 2*A158480(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069190(n)+A069190(n+1). - R. J. Mathar, May 07 2024

Extensions

More terms from Xavier Acloque, Oct 20 2003

A010021 a(0) = 1, a(n) = 32*n^2 + 2 for n > 0.

Original entry on oeis.org

1, 34, 130, 290, 514, 802, 1154, 1570, 2050, 2594, 3202, 3874, 4610, 5410, 6274, 7202, 8194, 9250, 10370, 11554, 12802, 14114, 15490, 16930, 18434, 20002, 21634, 23330, 25090, 26914, 28802, 30754, 32770, 34850, 36994, 39202, 41474, 43810, 46210, 48674, 51202
Offset: 0

Views

Author

Keywords

Comments

From Omar E. Pol, Apr 21 2021: (Start)
Sequence found by reading the line segment from 1 to 34 together with the line from 34, in the direction 34, 130, ..., in the rectangular spiral whose vertices are the generalized 18-gonal numbers A274979.
The spiral begins as follows:
46_ _ _ _ _ _ _ _ _ _18
| |
| 0 |
| | _ _ _ _ |
| 1 15
|
51
(End)

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

  • Mathematica
    Join[{1}, 32 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    CoefficientList[Series[(1 + x) (1 + 30 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2014 *)

Formula

G.f.: (1+x)*(1+30*x+x^2)/(1-x)^3. [Bruno Berselli, Feb 07 2012]
a(n) = A005893(4n) = A008527(2n); a(n+1) = A108100(2n+2). [Bruno Berselli, Feb 07 2012]
E.g.f.: (x*(x+1)*32+2)*e^x-1. - Gopinath A. R., Feb 14 2012
a(n) = (4n+1)^2+(4n-1)^2 for n>0. [Bruno Berselli, Jun 24 2014]
a(n) = A244082(n) + 2, n >= 1. - Omar E. Pol, Apr 21 2021
Sum_{n>=0} 1/a(n) = 3/4 + Pi/16*coth(Pi/4) = 1.04940725316131.. - R. J. Mathar, May 07 2024
a(n) = 2*A108211(n). - R. J. Mathar, May 07 2024
a(n) = A195315(n)+A195315(n+1). - R. J. Mathar, May 07 2024

A010010 a(0) = 1, a(n) = 20*n^2 + 2 for n>0.

Original entry on oeis.org

1, 22, 82, 182, 322, 502, 722, 982, 1282, 1622, 2002, 2422, 2882, 3382, 3922, 4502, 5122, 5782, 6482, 7222, 8002, 8822, 9682, 10582, 11522, 12502, 13522, 14582, 15682, 16822, 18002, 19222, 20482, 21782, 23122, 24502, 25922, 27382, 28882, 30422, 32002, 33622
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [20*n^2 + 2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 20 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {22, 82, 182}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

a(n) = A033571(n)+A158186(n) = A158187(n)*2 for n>0. - Reinhard Zumkeller, Mar 13 2009
G.f.: (1+x)*(1+18*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*20+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(10)/40*Pi*coth(Pi/sqrt(10)) = 1.0772981051444036327... - R. J. Mathar, May 07 2024
a(n) = A069133(n)+A069133(n+1). - R. J. Mathar, May 07 2024

A005919 Number of points on surface of tricapped prism: a(n) = 7*n^2 + 2 for n > 0, a(0)=1.

Original entry on oeis.org

1, 9, 30, 65, 114, 177, 254, 345, 450, 569, 702, 849, 1010, 1185, 1374, 1577, 1794, 2025, 2270, 2529, 2802, 3089, 3390, 3705, 4034, 4377, 4734, 5105, 5490, 5889, 6302, 6729, 7170, 7625, 8094, 8577, 9074, 9585, 10110, 10649, 11202, 11769, 12350, 12945, 13554
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A206399.

Programs

  • Maple
    A005919:=-(z+1)*(z**2+5*z+1)/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{1},7*Range[50]^2+2] (* or *) CoefficientList[Series[(-x^3-6x^2-6x-1)/(x-1)^3,{x,0,50}],x] (* Harvey P. Dale, Jan 13 2013 *)

Formula

From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: (1 + x)*(1 + 5*x + x^2)/(1-x)^3.
E.g.f.: exp(x)*(7*x^2 + 7*x + 2) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. (End)

Extensions

More terms from Erich Friedman, Aug 08 2005

A010008 a(0) = 1, a(n) = 18*n^2 + 2 for n>0.

Original entry on oeis.org

1, 20, 74, 164, 290, 452, 650, 884, 1154, 1460, 1802, 2180, 2594, 3044, 3530, 4052, 4610, 5204, 5834, 6500, 7202, 7940, 8714, 9524, 10370, 11252, 12170, 13124, 14114, 15140, 16202, 17300, 18434, 19604, 20810, 22052, 23330, 24644, 25994, 27380, 28802, 30260
Offset: 0

Views

Author

Keywords

Comments

The identity (18*n^2+2)^2-(9*n^2+2)*(6*n)^2=4 can be written as a(n+1)^2-A010002(n+1)*A008588(n+1)^2=4. - Vincenzo Librandi, Feb 07 2012

Crossrefs

After 20, all terms are in A000408.
Cf. A206399.

Programs

  • Magma
    [1] cat [18*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 18 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {20, 74, 164}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+16*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
a(n) = (3*n-1)^2+(3*n+1)^2 = (n-1)^2+(n+1)^2+(4*n)^2 for n>0. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*18+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+ (1/12)*Pi*coth(Pi/3) = 1.0853330948... - R. J. Mathar, May 07 2024
a(n) = 2*A247792(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069131(n)+A069131(n+1). - R. J. Mathar, May 07 2024

Extensions

More terms from Bruno Berselli, Feb 06 2012

A005903 Number of points on surface of dodecahedron: 30n^2 + 2 for n > 0.

Original entry on oeis.org

1, 32, 122, 272, 482, 752, 1082, 1472, 1922, 2432, 3002, 3632, 4322, 5072, 5882, 6752, 7682, 8672, 9722, 10832, 12002, 13232, 14522, 15872, 17282, 18752, 20282, 21872, 23522, 25232, 27002, 28832, 30722, 32672, 34682, 36752, 38882, 41072, 43322, 45632, 48002
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A206399.

Programs

Formula

G.f.: (1+x)*(1+28*x+x^2)/(1-x)^3. - Simon Plouffe (see MAPLE line)
Sum_{n>=0} 1/a(n) = 3/4 + Pi*sqrt(15)*coth(Pi/sqrt 15)/60 = 1.052567... - R. J. Mathar, Apr 27 2024

A005905 Number of points on surface of truncated tetrahedron: a(n) = 14*n^2 + 2 for n > 0, a(0)=1.

Original entry on oeis.org

1, 16, 58, 128, 226, 352, 506, 688, 898, 1136, 1402, 1696, 2018, 2368, 2746, 3152, 3586, 4048, 4538, 5056, 5602, 6176, 6778, 7408, 8066, 8752, 9466, 10208, 10978, 11776, 12602, 13456, 14338, 15248, 16186, 17152, 18146, 19168, 20218, 21296, 22402, 23536, 24698
Offset: 0

Views

Author

Keywords

Comments

Also sequence found by reading the segment (1,16) together with the line from 16, in the direction 16, 58, ... , in the square spiral whose vertices are the generalized enneagonal numbers A118277. - Omar E. Pol, Nov 05 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005905:=-(z+1)*(z**2+12*z+1)/(z-1)**3; # [Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    a[0] = 1; a[n_] := 14 n^2 + 2; Table[a[n], {n, 0, 50}] (* Wesley Ivan Hurt, Mar 04 2014 *)
  • PARI
    a(n) = if (n==0, 1, 14*n^2+2); \\ Michel Marcus, Mar 04 2014

Formula

From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: (1 + x)*(1 + 12*x + x^2)/(1-x)^3.
E.g.f.: 2*exp(x)*(7*x^2 + 7*x + 1) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. (End)

Extensions

More terms from Michel Marcus, Mar 04 2014

A010002 a(0) = 1, a(n) = 9*n^2 + 2 for n>0.

Original entry on oeis.org

1, 11, 38, 83, 146, 227, 326, 443, 578, 731, 902, 1091, 1298, 1523, 1766, 2027, 2306, 2603, 2918, 3251, 3602, 3971, 4358, 4763, 5186, 5627, 6086, 6563, 7058, 7571, 8102, 8651, 9218, 9803, 10406, 11027, 11666, 12323, 12998, 13691, 14402, 15131, 15878, 16643
Offset: 0

Views

Author

Keywords

Comments

Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=1, s=2. After 1, all terms are in A000408. [Bruno Berselli, Feb 06 2012]
The identity (18*n^2+2)^2-(9*n^2+2)*(6*n)^2 = 4 can be written as A010008(n+1)^2-a(n+1)*A008588(n+1)^2 = 4. - Vincenzo Librandi, Feb 07 2012

Crossrefs

Cf. A206399.

Programs

Formula

G.f.: (1+x)*(1+7*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*9+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(2)/12 *Pi*coth(Pi/3*sqrt 2) = 1.1606262038.. - R. J. Mathar, May 07 2024

Extensions

More terms from Bruno Berselli, Feb 06 2012

A010005 a(0) = 1, a(n) = 15*n^2 + 2 for n>0.

Original entry on oeis.org

1, 17, 62, 137, 242, 377, 542, 737, 962, 1217, 1502, 1817, 2162, 2537, 2942, 3377, 3842, 4337, 4862, 5417, 6002, 6617, 7262, 7937, 8642, 9377, 10142, 10937, 11762, 12617, 13502, 14417, 15362, 16337, 17342, 18377, 19442, 20537, 21662, 22817, 24002, 25217, 26462
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A206399.

Programs

Formula

G.f.: (1+x)*(1+13*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*15+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(30)/60*Pi*coth(Pi *sqrt(30)/15) = 1.101107302494... - R. J. Mathar, May 07 2024

Extensions

More terms from Bruno Berselli, Feb 06 2012

A010020 a(0) = 1, a(n) = 31*n^2 + 2 for n>0.

Original entry on oeis.org

1, 33, 126, 281, 498, 777, 1118, 1521, 1986, 2513, 3102, 3753, 4466, 5241, 6078, 6977, 7938, 8961, 10046, 11193, 12402, 13673, 15006, 16401, 17858, 19377, 20958, 22601, 24306, 26073, 27902, 29793, 31746, 33761, 35838, 37977, 40178, 42441, 44766, 47153, 49602
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [31*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 31 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {33, 126, 281}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+29*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*31+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(62)/124 *Pi*coth(Pi*sqrt(62)/31) = 1.05093832062... - R. J. Mathar, May 07 2024
Previous Showing 11-20 of 34 results. Next