cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A213133 Polylogarithm li(-n,-1/10) multiplied by (11^(n+1))/10.

Original entry on oeis.org

1, -1, -9, -61, -9, 9659, 197631, 1388099, -51302169, -2339721781, -41290278129, 536297904659, 64956862241271, 2152254297009179, 6320179650231711, -3288155212484644381, -187761119883430045689
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=1,q=10.

Examples

			polylog(-5,-1/10)*11^6/10 = 9659.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -1/10] 11^(n + 1)/10; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 1, 10)
    
  • PARI
    a(n) = sum(k=0, n, k!*(-1)^k*11^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022

Formula

See formula in A212846, setting p=1,q=10.
a(n) = Sum_{k=0..n} k! * (-1)^k * 11^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022

A213134 Polylogarithm li(-n,-2/5) multiplied by (7^(n+1))/5.

Original entry on oeis.org

1, -2, -6, 22, 426, 598, -54006, -568778, 8381226, 277762198, -123822006, -141432141578, -1958226061974, 70457642899798, 2812274227385994, -17169209695778378, -3417280244608089174, -48220222006064346602
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=5.

Examples

			polylog(-5,-2/5)*7^6/5 = 598.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -2/5] 7^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 2, 5)
    
  • PARI
    a(n) = sum(k=0, n, k!*(-2)^k*7^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022

Formula

See formula in A212846, setting p=2,q=5.
a(n) = Sum_{k=0..n} k! * (-2)^k * 7^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022

A213135 Polylogarithm li(-n,-2/7) multiplied by (9^(n+1))/7.

Original entry on oeis.org

1, -2, -10, 6, 870, 7878, -90810, -3599514, -20802330, 1466193798, 42164160390, -227736774234, -44798359213530, -896477167975482, 32992662466363590, 2308652347666959846, 16747450938362727270, -3885313022633595475962
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=7.

Examples

			polylog(-5,-2/7)*9^6/7 = 7878.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -2/7] 9^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 2, 7)
    
  • PARI
    a(n) = sum(k=0, n, k!*(-2)^k*9^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022

Formula

See formula in A212846, setting p=2,q=7.
a(n) = Sum_{k=0..n} k! * (-2)^k * 9^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022

A213136 Polylogarithm li(-n,-2/9) multiplied by (11^(n+1))/9.

Original entry on oeis.org

1, -2, -14, -26, 1330, 23638, -8414, -10070426, -215250350, 1947801718, 246368009986, 5254817440774, -152365259476430, -13578534513671402, -241920062298205214, 18542492740003377574, 1388279735908198531090
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=9.

Examples

			polylog(-5,-2/9)*11^6/9 = 23638.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -2/9] 11^(n + 1)/9; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 2, 9)

Formula

See formula in A212846, setting p=2,q=9.

A213137 Polylogarithm li(-n,-3/4) multiplied by (7^(n+1))/4.

Original entry on oeis.org

1, -3, -3, 69, 285, -6123, -56883, 1103109, 19251645, -320851083, -9828858963, 130009042149, 7019067151005, -62927791491243, -6646083378845043, 24719268064533189, 8013257547754474365, 22024516916447897397
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=4.

Examples

			polylog(-5,-3/4)*7^6/4 = -6123.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/4] 7^(n + 1)/4; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 3, 4)

Formula

See formula in A212846, setting p=3,q=4.

A213138 Polylogarithm li(-n,-3/5) multiplied by (8^(n+1))/5.

Original entry on oeis.org

1, -3, -6, 78, 696, -6888, -164976, 891888, 64108416, 60001152, -35965476096, -360892100352, 26498019265536, 633590774356992, -23310702740207616, -1122674884723771392, 20851651616596525056
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=5.

Examples

			polylog(-5,-3/5)*8^6/5 = -6888.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/5] 8^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 3, 5)

Formula

See formula in A212846, setting p=3,q=5.

A213139 Polylogarithm li(-n,-3/7) multiplied by (10^(n+1))/7.

Original entry on oeis.org

1, -3, -12, 78, 1824, 240, -513120, -5857680, 196293120, 6811964160, -57818956800, -8095402329600, -83402198630400, 10192670228889600, 371764953132748800, -11291351664942336000, -1131884186768228352000
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=7.

Examples

			polylog(-5,-3/7)*10^6/7 = 240
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/7] 10^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 3, 7)

Formula

See formula in A212846, setting p=3,q=7.

A213140 Polylogarithm li(-n,-3/8) multiplied by (11^(n+1))/8.

Original entry on oeis.org

1, -3, -15, 69, 2505, 10077, -716415, -14740491, 213018105, 15676762317, 98170027185, -17112616737051, -553855541534295, 15477991707447357, 1557738998240770785, 10238839745149426389, -3849999044450765494695
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=8.

Examples

			polylog(-5,-3/8)*11^6/8 = 10077.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/8] 11^(n + 1)/8; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 3, 8)

Formula

See formula in A212846, setting p=3,q=8.

A213141 Polylogarithm li(-n,-3/10) multiplied by (13^(n+1))/10.

Original entry on oeis.org

1, -3, -21, 33, 4011, 46617, -1015581, -48942687, -234562629, 46778432937, 1609014050259, -27879344558607, -4096322988867669, -82334747816721543, 7943345993936306499, 587663560859820510273
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=10.

Examples

			polylog(-5,-3/10)*13^6/10 = 46617.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/10] 13^(n + 1)/10; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 3, 10)

Formula

See formula in A212846, setting p=3,q=10.

A213142 Polylogarithm li(-n,-4/5) multiplied by (9^(n+1))/5.

Original entry on oeis.org

1, -4, -4, 156, 636, -23844, -213444, 7561116, 122079996, -3999858084, -105913993284, 3121006139676, 129328349560956, -3294956189426724, -210883838041123524, 4369388083699591836, 441597580986548139516
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=4,q=5.

Examples

			polylog(-5,-4/5)*9^6/5 = -23844.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -4/5] 9^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax,4,5)

Formula

See formula in A212846, setting p=4,q=5.
Previous Showing 11-20 of 36 results. Next