cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A100613 Number of elements in the set {(x,y): 1 <= x,y <= n, gcd(x,y) > 1}.

Original entry on oeis.org

0, 1, 2, 5, 6, 13, 14, 21, 26, 37, 38, 53, 54, 69, 82, 97, 98, 121, 122, 145, 162, 185, 186, 217, 226, 253, 270, 301, 302, 345, 346, 377, 402, 437, 458, 505, 506, 545, 574, 621, 622, 681, 682, 729, 770, 817, 818, 881, 894, 953, 990, 1045, 1046, 1117, 1146, 1209
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 02 2004

Keywords

Crossrefs

Programs

  • Haskell
    a100613 n = length [()| x <- [1..n], y <- [1..n], gcd x y > 1]
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Mathematica
    f[n_] := Table[ #^2 &[m], {m, 1, n + 1}] - FoldList[Plus, 1, 2 Array[EulerPhi, n, 2]] (* Gregg K. Whisler, Jun 25 2008 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, gcd(i,j)>1)); \\ Michel Marcus, Jan 30 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A100613(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(k1**2-A100613(k1))
            j, k1 = j2, n//j2
        return n+c-j # Chai Wah Wu, Mar 24 2021

Formula

a(n) = A000290(n) - A018805(n) = A185670(n) + A063985(n). - Reinhard Zumkeller, Jan 21 2013
a(n) = Sum_{k = 2..n} A242114(n,k). - Reinhard Zumkeller, May 04 2014
a(n) ~ kn^2, where k = 1 - 6/Pi^2 = 0.39207... (A229099). - Charles R Greathouse IV, Mar 29 2024

A368039 The product of exponents of prime factorization of the nonsquarefree numbers.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 4, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 6, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 4, 3, 6, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 8, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 4, 3, 2, 3, 6, 4, 2, 6, 2, 2, 4, 2, 9, 2, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A005361 that are larger than 1, since A005361(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    Select[Table[Times @@ FactorInteger[n][[;;, 2]], {n, 1, 250}], # > 1 &]
  • PARI
    lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A005361(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = ((zeta(2)*zeta(3)/zeta(6)) - 1/zeta(2))/(1-1/zeta(2)) = (A082695 - A059956)/A229099 = 3.406686208821... .

A250032 a(n) is the numerator of the density of natural numbers m such that gcd(m,floor(m/n))>1.

Original entry on oeis.org

1, 1, 1, 11, 7, 19, 16, 117, 269, 877, 1003, 11243, 4261, 56163, 61883, 199663, 107339, 919889, 2009948, 38444267, 41354174, 43432679, 46078049, 266161243, 379669754, 387106183, 407127338, 1258564159, 1322304979, 19229195413, 40830611677, 634491904301, 2638247862269, 2717256540199, 2823435623209, 2886468920107, 1006725304509
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

Let m be any natural number, and P(m) a relational expression on m (i.e., a property of m) evaluating to either 0 (false) or 1 (true). This defines a subset S of natural numbers N for which P(m)=1. When there exists a limit d=limit(M->infinity, Sum(m=1..M, P(m))/M), d is said to be the limit mean density (or just density) of the subset S in N. Now, choose an integer parameter n and set P(m)=gcd(m,floor(m/n))>1. This makes the property P, the corresponding subset S, and the density d all dependent upon n. The reference proves that for any n>0, the density d(n) exists and is a rational number. The value of a(n) is the numerator of d(n), while A250033(n) is the denominator of d(n).

Examples

			When n=1, S includes all natural numbers except 1, so d(1)=1. Hence a(1)=1 and A250033(1)=1.
When n=2, S includes all even numbers greater than 2, so d(2)=1/2. Hence a(2)=1 and A250033(2)=2.
When n=10, the subset S is A248500 and d(10)=877/2100. Hence a(10)=877 and A250033(10)=2100.
When n=16, S is A248502 and d(16)=199663/480480. Hence a(16)=199663 and A250033(16)=480480.
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(s(n-1)/n))

Formula

For n>1, a(n)/A250033(n) = s(n-1)/n, where s(n) = A250034(n)/A072155(n).
lim(n->infinity)a(n)/A250033(n) = 1-1/zeta(2) = A229099.

A368038 The sum of non-unitary divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 6, 3, 8, 14, 9, 12, 24, 5, 12, 16, 30, 41, 36, 24, 18, 56, 7, 15, 28, 36, 48, 48, 24, 62, 36, 105, 20, 40, 84, 39, 64, 72, 54, 48, 120, 21, 36, 87, 84, 140, 112, 60, 42, 144, 11, 64, 30, 72, 126, 96, 72, 108, 96, 233, 28, 76, 60, 120, 54, 112, 180, 117, 84
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The positive terms of A048146, since A048146(k) = 0 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); nusigma[n_] := Module[{fct = FactorInteger[n]}, If[n == 1, 0, Times @@ f @@@ fct - Times @@ (1 + Power @@@ fct)]]; Select[Array[nusigma, 200], # > 0 &]
  • PARI
    lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(sigma(f) - prod(i=1, #f~, 1+f[i,1]^f[i,2]), ", ")));}

Formula

a(n) = A048146(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/2)*(1-1/zeta(3))/(1-1/zeta(2))^2 = 0.899359898779... .

A368040 The powerful part of the nonsquarefree numbers.

Original entry on oeis.org

4, 8, 9, 4, 16, 9, 4, 8, 25, 27, 4, 32, 36, 8, 4, 9, 16, 49, 25, 4, 27, 8, 4, 9, 64, 4, 72, 25, 4, 16, 81, 4, 8, 9, 4, 32, 49, 9, 100, 8, 108, 16, 4, 9, 8, 121, 4, 125, 9, 128, 4, 27, 8, 4, 144, 49, 4, 25, 8, 9, 4, 32, 81, 4, 8, 169, 9, 4, 25, 16, 36, 8, 4, 27
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A057521 that are larger than 1, since A057521(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powPart[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[powPart, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A057521(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = d/(3*(1-1/zeta(2))^(3/2)) = 4.778771..., and d = A328013.

A063035 Number of integers m <= 10^n that contain a square factor (i.e., belong to A013929).

Original entry on oeis.org

3, 39, 392, 3917, 39206, 392074, 3920709, 39207306, 392072876, 3920729058, 39207289720, 392072897726, 3920728981706, 39207289814053, 392072898145897, 3920728981459595
Offset: 1

Views

Author

Robert G. Wilson v, Aug 02 2001

Keywords

Comments

Note that "containing a square factor" (A013929) is different from "squareful" (A001694).

Crossrefs

For the complementary counts see A053462 and A071172.

Programs

  • Mathematica
    f[n_] := Sum[-MoebiusMu[i]Floor[n/i^2], {i, 2, Sqrt@ n}]; Table[ f[10^n], {n, 0, 14}]
  • PARI
    { default(realprecision, 50); for (n=1, 100, t=10^n - 1; a=10^n - sum(k=1, sqrt(t), moebius(k)*floor(t/k^2)); write("b063035.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 16 2009
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A063035(n): return (m:=10**n)-sum(mobius(k)*(m//k**2) for k in range(1,isqrt(m)+1)) # Chai Wah Wu, Jul 20 2024

Formula

Limit_{n->oo} a(n)/10^n = A229099. - Robert G. Wilson v, Aug 12 2014
a(n) = 10^n - A071172(n). - Amiram Eldar, Mar 10 2024

Extensions

More terms from Harry J. Smith, Aug 16 2009
Edited (with a more precise definition and a new value for a(1)) by N. J. A. Sloane, Aug 06 2012. As a result of this change, the programs probably now give the wrong value for a(1). The source of the trouble was the ambiguous meaning of squareful - the official definition of squareful is A001694.

A087049 Characteristic sequence for numbers n>=0 that are either squares or have a square > 1 as factor.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 08 2003

Keywords

Comments

a(0)=1, a(1)=1, n>=2: a(n)=1 if isquarefree(n)=false else 0.
Except for a(0)=1 and a(1)=1 this is the bit-flipped unsigned Moebius sequence abs(A008683(n)), n>=2.
For n>=2: a(n)=1 iff n is from A013929 (not squarefree).

Examples

			a(4) = 1 because 4 is a square; a(8) = 1 because 8 = 2^2 * 2.
		

Crossrefs

Cf. A008683, A008966, A080733, A000290 (squares), A013929 (not squarefree), A229099.

Programs

  • Maple
    1,1,seq(`if`(numtheory:-issqrfree(n),0,1),n=2..100); # Robert Israel, Nov 17 2017
  • Mathematica
    Array[If[# <= 1, 1, 1 - Abs@ MoebiusMu@ #] &, 105, 0] (* Michael De Vlieger, Nov 17 2017 *)
  • PARI
    A087049(n) = if(n<=1,1,1-abs(moebius(n))); \\ Antti Karttunen, Nov 17 2017

Formula

a(n) = 1 if n is a perfect square (A000290) or has some square > 1 as a factor, else 0.
a(0) = a(1) = 1; for n > 1, a(n) = 1 - A008966(n). - Antti Karttunen, Nov 17 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Jan 19 2024

A212177 Number of exponents >= 2 in the canonical prime factorization of the n-th nonsquarefree number (A013929(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of second signature of A013929(n) (cf. A212172).

Examples

			24 = 2^3*3 has 1 exponent of size 2 or greater in its prime factorization. Since 24 = A013929(8), a(8) = 1.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Programs

Formula

a(n) = A056170(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (Sum_{p prime} 1/p^2)/(1-1/zeta(2)) = A085548 / A229099 = 1.15347789194214704903... . - Amiram Eldar, Oct 01 2023

A303946 Numbers that are neither squarefree nor perfect powers.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189
Offset: 1

Views

Author

Gus Wiseman, May 03 2018

Keywords

Comments

First differs from A059404 at a(40) = 147, A059404(40) = 144.
First differs from A126706 at a(6) = 40, A126706(6) = 36.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
    F:= map(t->t[2],ifactors(n)[2]);
    max(F)>1 and igcd(op(F))=1
    end proc:
    select(filter, [$1..1000]); # Robert Israel, May 06 2018
  • Mathematica
    Select[Range[200], !SquareFreeQ[#] && GCD@@FactorInteger[#][[All, 2]] == 1 &]
  • PARI
    isok(n) = !issquarefree(n) && !ispower(n); \\ Michel Marcus, May 05 2018
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A303946(n):
        def f(x): return int(n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 19 2024

Formula

a(n) ~ n/k, where k = 1 - 1/zeta(2) = 1 - 6/Pi^2 = A229099. - Charles R Greathouse IV, Jun 01 2018

A258614 Numbers m having with the largest square <= m a common divisor > 1.

Original entry on oeis.org

4, 6, 8, 9, 12, 15, 16, 18, 20, 22, 24, 25, 30, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 56, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 84, 87, 90, 93, 96, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 121, 132, 143, 144, 146, 147
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 05 2015

Keywords

Comments

The asymptotic density of this sequence is 1-6/Pi^2 (A229099). - Amiram Eldar, Nov 19 2024

Examples

			a(11) = 24: GCD(24,A048760(24)) = GCD(24,16) = 4 > 1.
a(12) = 25: GCD(25,A048760(25)) = GCD(25,25) = 25 > 1.
GCD(26,A048760(26)) = GCD(26,25) = 1, therefore 26 is not a term.
		

Crossrefs

Cf. A074695, A048760, A229099, A258613 (complement).

Programs

  • Haskell
    a258614 n = a258614_list !! (n-1)
    a258614_list = filter ((> 1) . a074695) [1..]
    
  • Mathematica
    Select[Range[150], !CoprimeQ[#, Floor[Sqrt[#]]^2] &] (* Amiram Eldar, Nov 19 2024 *)
  • PARI
    isok(m) = gcd(m, sqr(sqrtint(m))) > 1; \\ Michel Marcus, Jan 23 2022

Formula

A074695(a(n)) > 1.
Previous Showing 11-20 of 28 results. Next