cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A014405 Number of arithmetic progressions of 3 or more positive integers, strictly increasing with sum n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 3, 0, 1, 5, 1, 0, 6, 0, 2, 7, 2, 0, 8, 2, 2, 9, 3, 0, 13, 0, 2, 11, 3, 4, 15, 0, 3, 13, 6, 0, 18, 0, 4, 20, 4, 0, 19, 2, 8, 18, 5, 0, 23, 6, 6, 20, 5, 0, 30, 0, 5, 25, 6, 7, 29, 0, 6, 24, 15, 0, 32, 0, 6, 34, 7, 4, 34, 0, 14, 31, 7, 0, 39, 9, 7, 31, 9, 0, 49, 5, 9, 33, 8, 10, 42, 0, 12
Offset: 1

Views

Author

Keywords

Examples

			E.g., 15 = 1+2+3+4+5 = 1+5+9 = 2+5+8 = 3+5+7 = 4+5+6.
		

Crossrefs

Programs

  • PARI
    a(n)= t=0; st=0; forstep(s=(n-3)\3,1,-1, st++; for(c=1,st, m=3; w=m*(s+c); while(wRick L. Shepherd, Aug 30 2006

Formula

G.f.: Sum_{k >= 3} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 3} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
a(n) = A049992(n) - A023645(n). - Antti Karttunen, Feb 20 2023

A325362 Heinz numbers of integer partitions whose differences (with the last part taken to be 0) are weakly increasing.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A007294.
This sequence and A025487, considered as sets, are related by the partition conjugation function A122111(.), which maps the members of either set 1:1 onto the other set. - Peter Munn, Feb 10 2022

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   19: {8}
   21: {2,4}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   30: {1,2,3}
   31: {11}
   33: {2,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],OrderedQ[Differences[Append[primeptn[#],0]]]&]

A325360 Heinz numbers of integer partitions whose differences are weakly increasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A240026.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
   18: {1,2,2}
   36: {1,1,2,2}
   50: {1,3,3}
   54: {1,2,2,2}
   70: {1,3,4}
   72: {1,1,1,2,2}
   75: {2,3,3}
   90: {1,2,2,3}
   98: {1,4,4}
  100: {1,1,3,3}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],OrderedQ[Differences[primeptn[#]]]&]

A014406 Number of strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 3, 4, 4, 7, 7, 8, 13, 14, 14, 20, 20, 22, 29, 31, 31, 39, 41, 43, 52, 55, 55, 68, 68, 70, 81, 84, 88, 103, 103, 106, 119, 125, 125, 143, 143, 147, 167, 171, 171, 190, 192, 200, 218, 223, 223, 246, 252, 258, 278, 283, 283, 313, 313, 318, 343, 349, 356, 385, 385
Offset: 1

Views

Author

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(8) = 1 because we have only the following strictly increasing arithmetic progression of positive integers with at least 3 terms and sum <= 8: 1+2+3.
a(9) = 3 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 9: 1+2+3, 1+3+5, and 2+3+4.
a(10) = 4 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 10: 1+2+3, 1+3+5, 2+3+4, and 1+2+3+4.
(End)
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} A014405(k). - Sean A. Irvine, Oct 22 2018
G.f.: (g.f. of A014405)/(1-x). - Petros Hadjicostas, Sep 29 2019

Extensions

a(59)-a(67) corrected by Fausto A. C. Cariboni, Oct 02 2018

A179254 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are strictly increasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 8, 9, 9, 13, 14, 15, 19, 21, 22, 28, 30, 32, 39, 42, 44, 54, 58, 61, 72, 77, 82, 96, 102, 108, 124, 133, 141, 160, 171, 180, 203, 218, 230, 256, 273, 289, 320, 342, 361, 395, 423, 447, 486, 520, 548, 594, 635, 669, 721, 769, 811, 871, 928, 978, 1044, 1114
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2011

Keywords

Comments

Partitions into distinct parts (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) < p(k) - p(k-1) for all k >= 3.

Examples

			There are a(17) = 21 such partitions of 17:
01:  [ 1 2 4 10 ]
02:  [ 1 2 5 9 ]
03:  [ 1 2 14 ]
04:  [ 1 3 13 ]
05:  [ 1 4 12 ]
06:  [ 1 5 11 ]
07:  [ 1 16 ]
08:  [ 2 3 12 ]
09:  [ 2 4 11 ]
10:  [ 2 5 10 ]
11:  [ 2 15 ]
12:  [ 3 4 10 ]
13:  [ 3 5 9 ]
14:  [ 3 14 ]
15:  [ 4 5 8 ]
16:  [ 4 13 ]
17:  [ 5 12 ]
18:  [ 6 11 ]
19:  [ 7 10 ]
20:  [ 8 9 ]
21:  [ 17 ]
- _Joerg Arndt_, Mar 31 2014
		

Crossrefs

Cf. A007294, A179255 (nondecreasing differences), A179269, A320382, A320385.
Cf. A240026 (partitions with nondecreasing differences), A240027 (partitions with strictly increasing differences).

Programs

  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A179254(n)
      (0..n).map{|i| f(i)}
    end
    p A179254(50) # Seiichi Manyama, Oct 12 2018
  • Sage
    def A179254(n):
        has_increasing_diffs = lambda x: min(differences(x,2)) >= 1
        allowed = lambda x: len(x) < 3 or has_increasing_diffs(x)
        return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
    # D. S. McNeil, Jan 06 2011
    

A320509 Number of partitions of n such that the successive differences of consecutive parts are nonincreasing, and first difference <= first part.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 6, 4, 6, 8, 7, 8, 11, 7, 12, 14, 10, 13, 19, 12, 18, 21, 16, 19, 27, 19, 25, 30, 25, 30, 37, 25, 35, 40, 35, 42, 49, 35, 49, 56, 46, 54, 66, 50, 65, 72, 60, 70, 83, 68, 84, 90, 80, 94, 110, 86, 107, 116, 98, 119, 137, 111, 134, 146, 130, 148, 165, 141, 169
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check visually if written in ascending order.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences (with the first part taken to be 0) of (6,3,1) are (-3,-2,-1). Then a(n) is the number of integer partitions of n whose differences (with the last part taken to be 0) are weakly decreasing. The Heinz numbers of these partitions are given by A325364. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences (with the first part taken to be 0) are weakly decreasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(11) = 8 such partitions of 11:
01: [11]
02: [4, 7]
03: [5, 6]
04: [2, 4, 5]
05: [3, 4, 4]
06: [2, 3, 3, 3]
07: [1, 2, 2, 2, 2, 2]
08: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
There are a(12) = 11 such partitions of 12:
01: [12]
02: [4, 8]
03: [5, 7]
04: [6, 6]
05: [2, 4, 6]
06: [3, 4, 5]
07: [4, 4, 4]
08: [3, 3, 3, 3]
09: [1, 2, 3, 3, 3]
10: [2, 2, 2, 2, 2, 2]
11: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
		

Crossrefs

Cf. A320387 (distinct parts, nonincreasing, and first difference <= first part).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320509(n)
      (0..n).map{|i| f(i)}
    end
    p A320509(50)

A049989 a(n) is the number of arithmetic progressions of positive integers, nondecreasing with sum <= n.

Original entry on oeis.org

1, 3, 6, 10, 14, 21, 26, 33, 42, 51, 58, 72, 80, 91, 107, 120, 130, 150, 161, 178, 199, 215, 228, 255, 272, 290, 316, 338, 354, 389, 406, 429, 460, 483, 508, 549, 569, 594, 630, 663, 685, 731, 754, 785, 833, 863, 888, 940, 969, 1007, 1054, 1090, 1118, 1175, 1212, 1253, 1305, 1342, 1373, 1444, 1476, 1515, 1577, 1621
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={my(w=(sqrtint(8*n+1)-1)\2+1); Vec(x/(1-x)^2 + sum(k=2, n, x^k/(1 - if(k<=w, x^(k*(k-1)/2)))/(1-x^k) + O(x*x^n))/(1-x))} \\ Andrew Howroyd, Sep 28 2019

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049988(k). [Note that the offset of A049988 is 0.]
G.f.: (-1 + g.f. of A049988)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 28 2019

A325546 Number of compositions of n with weakly increasing differences.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 19, 28, 41, 62, 87, 120, 170, 228, 303, 408, 534, 689, 899, 1145, 1449, 1842, 2306, 2863, 3571, 4398, 5386, 6610, 8039, 9716, 11775, 14157, 16938, 20293, 24166, 28643, 33995, 40134, 47199, 55540, 65088, 75994, 88776, 103328, 119886, 139126
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

Also compositions of n whose plot is concave-up.
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (112)   (41)     (42)
                    (211)   (113)    (51)
                    (1111)  (212)    (114)
                            (311)    (123)
                            (1112)   (213)
                            (2111)   (222)
                            (11111)  (312)
                                     (321)
                                     (411)
                                     (1113)
                                     (2112)
                                     (3111)
                                     (11112)
                                     (21111)
                                     (111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Differences[#]&]],{n,0,15}]
  • PARI
    \\ Row sums of R(n) give A007294 (=breakdown by width).
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-w-1)\t + 1, v[i-w-(k-1)*t]))); Mat(L)}
    seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w])));  x^i/(1 - x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 28 2019

Extensions

More terms from Alois P. Heinz, May 11 2019

A320470 Number of partitions of n such that the successive differences of consecutive parts are strictly decreasing.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 7, 6, 8, 10, 10, 11, 14, 13, 16, 19, 18, 20, 25, 23, 27, 31, 30, 34, 39, 37, 42, 48, 47, 50, 59, 56, 63, 70, 68, 74, 83, 82, 89, 97, 97, 104, 116, 113, 123, 133, 133, 142, 155, 153, 166, 178, 178, 189, 204, 204, 218, 232, 235, 247, 265, 265, 283, 299
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) > p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are strictly decreasing. The Heinz numbers of these partitions are given by A325457. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly decreasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(10) = 8 such partitions of 10:
01: [10]
02: [1, 9]
03: [2, 8]
04: [3, 7]
05: [4, 6]
06: [5, 5]
07: [1, 4, 5]
08: [2, 4, 4]
There are a(11) = 10 such partitions of 11:
01: [11]
02: [1, 10]
03: [2, 9]
04: [3, 8]
05: [4, 7]
06: [5, 6]
07: [1, 4, 6]
08: [1, 5, 5]
09: [2, 4, 5]
10: [3, 4, 4]
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Greater@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0
      }
      cnt
    end
    def A320470(n)
      (0..n).map{|i| f(i)}
    end
    p A320470(50)

A179255 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are nondecreasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 5, 8, 9, 10, 13, 15, 16, 22, 24, 26, 33, 36, 39, 50, 54, 58, 70, 77, 83, 100, 109, 116, 137, 150, 159, 186, 202, 216, 249, 270, 288, 328, 355, 379, 428, 462, 491, 554, 597, 633, 707, 760, 807, 899, 964, 1020, 1127, 1211, 1282, 1412, 1512, 1596, 1750, 1873, 1976, 2160, 2305, 2434, 2652, 2826, 2978
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2011

Keywords

Comments

Partitions into distinct parts (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) <= p(k) - p(k-1) for all k >= 3.

Examples

			There are a(17) = 26 such partitions of 17:
01:  [ 1 2 3 4 7 ]
02:  [ 1 2 3 11 ]
03:  [ 1 2 4 10 ]  *
04:  [ 1 2 5 9 ]   *
05:  [ 1 2 14 ]   *
06:  [ 1 3 5 8 ]
07:  [ 1 3 13 ]   *
08:  [ 1 4 12 ]   *
09:  [ 1 5 11 ]   *
10:  [ 1 16 ]   *
11:  [ 2 3 4 8 ]
12:  [ 2 3 5 7 ]
13:  [ 2 3 12 ]   *
14:  [ 2 4 11 ]   *
15:  [ 2 5 10 ]   *
16:  [ 2 15 ]   *
17:  [ 3 4 10 ]   *
18:  [ 3 5 9 ]   *
19:  [ 3 14 ]   *
20:  [ 4 5 8 ]   *
21:  [ 4 13 ]   *
22:  [ 5 12 ]   *
23:  [ 6 11 ]   *
24:  [ 7 10 ]   *
25:  [ 8 9 ]   *
26:  [ 17 ]   *
The 21 partitions marked with * have strictly increasing differences, see the example for A179254.
- _Joerg Arndt_, Mar 31 2014
		

Crossrefs

Cf. A009994.
Cf. A179254 (strictly increasing differences), A179269, A007294.
Cf. A240026 (partitions with nondecreasing differences), A240027 (partitions with strictly increasing differences), A320382.

Programs

  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse
      }
      cnt
    end
    def A179255(n)
      (0..n).map{|i| f(i)}
    end
    p A179255(50) # Seiichi Manyama, Oct 12 2018
  • Sage
    def A179255(n):
        has_nondecreasing_diffs = lambda x: min(differences(x,2)) >= 0
        allowed = lambda x: len(x) < 3 or has_nondecreasing_diffs(x)
        return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
    # D. S. McNeil, Jan 06 2011
    
Previous Showing 11-20 of 33 results. Next