cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A094888 Decimal expansion of 2*Pi*phi, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 0, 1, 6, 6, 4, 0, 7, 3, 8, 4, 6, 3, 0, 5, 1, 9, 6, 3, 1, 6, 1, 9, 0, 1, 8, 0, 2, 6, 4, 8, 4, 3, 9, 7, 6, 8, 3, 6, 6, 3, 6, 7, 8, 5, 8, 6, 4, 4, 2, 3, 0, 8, 2, 4, 0, 9, 6, 4, 6, 6, 5, 6, 1, 8, 4, 9, 9, 9, 5, 8, 2, 8, 6, 9, 0, 5, 3, 9, 7, 2, 0, 3, 7, 3, 2, 1, 7, 7, 2, 4, 0, 7, 0, 7, 8, 8, 4, 3
Offset: 2

Views

Author

N. J. A. Sloane, Jun 15 2004

Keywords

Examples

			10.16640738463051963161901802648439768366367858644230824...
		

Crossrefs

Integral_{x>=0} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), A019670 (m=6), A352125 (m=8), this sequence (m=10).

Programs

  • Maple
    evalf(Pi*(1+sqrt(5)), 121);  # Alois P. Heinz, May 16 2022
  • Mathematica
    RealDigits[2 * Pi * GoldenRatio, 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)

Formula

From Peter Bala, Nov 03 2019: (Start)
Equals 10*Integral_{x >= 0} cosh(4*x)/cosh(5*x) dx = Integral_{x = 0..1} (1 + x^8)/(1 + x^10) dx .
Equals 100*Sum_{n >= 0} (-1)^n*(2*n + 1)/( (10*n + 1)*(10*n + 9) ). (End)
Equals 10 * Product_{k>=2} 2/sqrt(2 + sqrt(2 + ... sqrt(2 + phi)...)), with k nested radicals (Baez, 2017). - Amiram Eldar, May 18 2021
Equals Integral_{x>=0} 1/(1 + x^10) dx = (Pi/10) * csc(Pi/10). - Bernard Schott, May 15 2022
Equals Gamma(1/10)*Gamma(9/10). - Andrea Pinos, Jul 03 2023
Equals 10 * Product_{k >= 1} (10*k)^2/((10*k)^2 - 1). - Antonio Graciá Llorente, Mar 15 2024
Equals 10 * Product_{k>=2} (1 + (-1)^k/A090771(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A094886 = 10*A135155/e. - Hugo Pfoertner, Nov 23 2024

A352125 Decimal expansion of Pi*sqrt(2)*sqrt(2 + sqrt(2))/8.

Original entry on oeis.org

1, 0, 2, 6, 1, 7, 2, 1, 5, 2, 9, 7, 7, 0, 3, 0, 8, 8, 8, 8, 7, 1, 4, 6, 7, 7, 8, 0, 8, 7, 2, 8, 3, 1, 9, 7, 4, 9, 7, 9, 6, 2, 1, 5, 8, 8, 1, 9, 5, 8, 1, 6, 1, 1, 9, 6, 2, 2, 5, 4, 9, 6, 4, 6, 6, 6, 8, 6, 8, 5, 0, 3, 1, 7, 5, 5, 6, 3, 2, 7, 1, 3, 4, 1, 8, 9, 1, 5, 3, 3, 6, 5, 6, 2, 0
Offset: 1

Views

Author

Stefano Spezia, Mar 05 2022

Keywords

Examples

			1.02617215297703088887146778087283197497962...
		

References

  • Jean-François Pabion, Éléments d'Analyse Complexe, licence de Mathématiques, page 111, Ellipses, 1995.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), A019670 (m=6), this sequence (m=8), A094888 (m=10).

Programs

  • Mathematica
    First[RealDigits[N[Pi*Sqrt[2]Sqrt[2+Sqrt[2]]/8,95]]]
  • PARI
    Pi*sqrt(4 + 2*sqrt(2))/8 \\ Michel Marcus, Mar 07 2022

Formula

Equals Integral_{x=0..oo} 1/(1 + x^8) dx.
Equals Pi*csc(Pi/8)/8.
Equals 1/Product_{k>=1} (1 - 1/(8*k)^2). - Amiram Eldar, Mar 12 2022
Equals Product_{k>=2} (1 + (-1)^k/A047522(k)). - Amiram Eldar, Nov 22 2024

A097109 G.f.: s(2)^2*s(3)^3/(s(1)*s(6)^2), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.

Original entry on oeis.org

1, 1, 0, -2, -3, 0, 0, 2, 0, -2, 0, 0, 6, 2, 0, 0, -3, 0, 0, 2, 0, -4, 0, 0, 0, 1, 0, -2, -6, 0, 0, 2, 0, 0, 0, 0, 6, 2, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 6, 3, 0, 0, -6, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, -4, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, -6, 0, 0, 2, 0, -2, 0, 0, 12, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 2, 0, 0, -3, 0, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 16 2004

Keywords

Comments

Coefficients are multiplicative [Fine].

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.36).

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^2*(QP[q^3]^3/(QP[q]*QP[q^6]^2)) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^2), n))} /* Michael Somos, Sep 15 2006 */
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if(p==2, 3*(e%2-1), if( p==3, -2, if( p%6==1, e+1, 1-e%2))))))} /* Michael Somos, Sep 15 2006 */

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
From Michael Somos, Sep 15 2006: (Start)
Expansion of (a(q) - 3*a(q^3) - 4*a(q^4) + 12*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Euler transform of period 6 sequence [ 1, -1, -2, -1, 1, -2, ...].
a(n) is multiplicative with a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). (End)
a(3*n + 2) = 0. a(3*n) = A115978(n). a(3*n + 1) = A122861(n).
Sum_{k=0..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 22 2024

A112848 Expansion of eta(q)*eta(q^2)*eta(q^18)^2/(eta(q^6)*eta(q^9)) in powers of q.

Original entry on oeis.org

1, -1, -2, 1, 0, 2, 2, -1, -2, 0, 0, -2, 2, -2, 0, 1, 0, 2, 2, 0, -4, 0, 0, 2, 1, -2, -2, 2, 0, 0, 2, -1, 0, 0, 0, -2, 2, -2, -4, 0, 0, 4, 2, 0, 0, 0, 0, -2, 3, -1, 0, 2, 0, 2, 0, -2, -4, 0, 0, 0, 2, -2, -4, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, -2, -2, 2, 0, 4, 2, 0, -2, 0, 0, -4, 0, -2, 0, 0, 0, 0, 4, 0, -4, 0, 0, 2, 2, -3, 0, 1, 0, 0, 2, -2, 0
Offset: 1

Views

Author

Michael Somos, Sep 22 2005

Keywords

Crossrefs

Cf. A033687, A033762, A092829, A093829, A097195, A248897, A255648 (absolute values).

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]*QP[q^2]*(QP[q^18]^2/(QP[q^6]*QP[q^9])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[2, e_] := (-1)^e; f[3, e_]:= -2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 28 2024 *)
  • PARI
    {a(n)=if(n<1, 0, if(n%3==0, n/=3; -2,1)* sumdiv(n,d,kronecker(-12,d) -if(d%2==0, 2*kronecker(-3,d/2))))}
    
  • PARI
    {a(n)=local(A); if (n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x+A)*eta(x^2+A)*eta(x^18+A)^2/ eta(x^6+A)/eta(x^9+A), n))}

Formula

Euler transform of period 18 sequence [ -1, -2, -1, -2, -1, -1, -1, -2, 0, -2, -1, -1, -1, -2, -1, -2, -1, -2, ...].
Moebius transform is period 18 sequence [1, -2, -3, 2, -1, 6, 1, -2, 0, 2, -1, -6, 1, -2, 3, 2, -1, 0, ...].
Multiplicative with a(2^e) = (-1)^e, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} Kronecker(-3, k) x^k(1-x^(2k))^2/(1-x^(6k)) = x Product_{k>0} (1-x^k)(1-x^(2k))(1+x^(9k))(1+x^(6k)+x^(12k)).
a(3n) = -2*A092829(n). a(3n+1) = A093829(3n+1) = A033687(n). a(3n+2) = A093829(3n+2). a(6n)/2 = A093829(n). a(6n+1) = A097195(n). a(6n+3) = -2*A033762(n). a(6n+5) = 0.
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 23 2024

A123331 Expansion of (c(q)^2/(3c(q^2))-1)/2 in powers of q where c(q) is a cubic AGM function.

Original entry on oeis.org

1, 2, 1, 1, 0, 2, 2, 2, 1, 0, 0, 1, 2, 4, 0, 1, 0, 2, 2, 0, 2, 0, 0, 2, 1, 4, 1, 2, 0, 0, 2, 2, 0, 0, 0, 1, 2, 4, 2, 0, 0, 4, 2, 0, 0, 0, 0, 1, 3, 2, 0, 2, 0, 2, 0, 4, 2, 0, 0, 0, 2, 4, 2, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 1, 2, 0, 4, 2, 0, 1, 0, 0, 2, 0, 4, 0, 0, 0, 0, 4, 0, 2, 0, 0, 2, 2, 6, 0, 1, 0, 0, 2, 4, 0
Offset: 1

Views

Author

Michael Somos, Sep 26 2006

Keywords

Crossrefs

Cf. A123330(n)=2*a(n) if n>0. A113974(n)=-(-1)^n*a(n).
Cf. A248897.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[2, e_] := (3-(-1)^e)/2; f[3, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    {a(n)=if(n<1, 0, -sumdiv(n, d, (-1)^d*kronecker(-3,d)))}
    
  • PARI
    {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, (3-(-1)^e)/2, if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)*eta(x^3+A)^6/ eta(x+A)^2/eta(x^6+A)^3-1)/2, n))}

Formula

Moebius transform is period 6 sequence [ 1, 1, 0, -1, -1, 0, ...].
a(n) is multiplicative with a(2^e) = (3-(-1)^e)/2, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
a(3n) = a(4n) = a(n). a(6n+5) = 0.
G.f.: Sum_{k>0} x^k/(1-x^k+x^(2k)) = (theta_3(-q^3)^3/theta_3(-q) - 1)/2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Nov 14 2023

A072703 Indices of Fibonacci numbers whose last digit is 5.

Original entry on oeis.org

5, 10, 20, 25, 35, 40, 50, 55, 65, 70, 80, 85, 95, 100, 110, 115, 125, 130, 140, 145, 155, 160, 170, 175, 185, 190, 200, 205, 215, 220, 230, 235, 245, 250, 260, 265, 275, 280, 290, 295, 305, 310, 320, 325, 335, 340, 350, 355, 365, 370, 380, 385, 395, 400, 410
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Sequence contains numbers of the forms 5 + 60*k, 10 + 60*k, 20 + 60*k, 25 + 60*k, 35 + 60*k, 40 + 60*k, 50 + 60*k, 55 + 60*k, where k>=0.
Numbers that are congruent to {5, 10} mod 15. - Amiram Eldar, Jan 01 2022, Nov 25 2024

Crossrefs

Programs

Formula

a(n) = 15*(n-1)-a(n-1), with a(1) = 5. - Vincenzo Librandi, Aug 08 2010
From Harvey P. Dale, May 15 2011: (Start)
a(1) = 5, a(2) = 10, a(3) = 20, a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = -(5/4)*(3+(-1)^n-6*n). (End)
G.f.: 5*x*(x^2+x+1) / ((x-1)^2*(x+1)). - Colin Barker, Jun 16 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(15*sqrt(3)) = A248897 / 10. - Amiram Eldar, Jan 01 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(Pi/10)*sec(Pi/6) = sqrt((5+sqrt(5))/6).
Product_{n>=1} (1 + (-1)^n/a(n)) = (2/sqrt(3))*cos(7*Pi/30). (End)
a(n) = 5 * A001651(n). - Alois P. Heinz, Nov 27 2024

Extensions

Edited by M. F. Hasler, Oct 08 2014

A138805 Theta series of quadratic form x^2 + x*y + 7*y^2.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 4, 0, 6, 0, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 6, 4, 0, 0, 4, 0, 0, 0, 0, 6, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 12, 2, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 6, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Mar 30 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 + 4*q^7 + 6*q^9 + 4*q^13 + 2*q^16 + 4*q^19 + 2*q^25 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(27), 1), 87); A[1] + 2*A[2] + 2*A[5] + 4*A[8] + 6*A[10] + 4*A[14] + 2*A[15]; /* Michael Somos, Sep 08 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -3, n/#] {1, 1, 0, 1, 1, 0, 1, 1, 3}[[Mod[#, 9, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^27] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^27], {q, 0, n}]; (* Michael Somos, Sep 08 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * x * Ser(qfrep([2, 1; 1, 14], n, 1)), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^54 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^27 + A) * eta(x^108 + A))^2 + 4 * x^7 * (eta(x^4 + A) * eta(x^108 + A))^2 / (eta(x^2 + A) * eta(x^54 + A)), n))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, kronecker(-3, n/d) * [ 3, 1, 1, 0, 1, 1, 0, 1, 1][n%9 + 1]))}; /* Michael Somos, Sep 08 2015 */
    

Formula

Expansion of theta_3(q) * theta_3(q^27) + theta_2(q) * theta_2(q^27) in powers of q.
Expansion of phi(q) * phi(q^27) + 4 * q^7 * psi(q^2) * psi(q^54) in powers of q where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 27 sequence [ 2, -2, -2, 2, -2, 2, 2, -2, 6, 2, -2, -2, 2, -2, 2, 2, -2, -6, 2, -2, -2, 2, -2, 2, 2, -2, 0, ...].
a(n) = 2*b(n) where b() is multiplicative with b(3^e) = 3 if e>1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{i, j in Z} x^(i*i + i*j + 7*j*j).
a(3*n + 2) = a(4*n + 2) = 0.
a(n) = 2 * A138806(n) unless n=0. a(9*n) = A004016(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Dec 29 2023

A248181 Decimal expansion of Sum_{h >= 0} 1/binomial(h, floor(h/2)).

Original entry on oeis.org

3, 2, 0, 9, 1, 9, 9, 5, 7, 6, 1, 5, 6, 1, 4, 5, 2, 3, 3, 7, 2, 9, 3, 8, 5, 5, 0, 5, 0, 9, 4, 7, 7, 0, 4, 8, 8, 1, 8, 9, 3, 7, 7, 4, 9, 8, 7, 2, 8, 4, 9, 3, 7, 1, 7, 0, 4, 6, 5, 8, 9, 9, 5, 6, 9, 2, 5, 4, 1, 5, 4, 5, 4, 0, 8, 4, 2, 3, 5, 9, 2, 2, 4, 5, 6, 0
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2014

Keywords

Comments

Is this 2 + A248897? [Bruno Berselli, Mar 06 2015]. Yes, see Mathematica program below. - Vaclav Kotesovec, Jul 01 2024

Examples

			3.20919957615614523372938550509477048818...
Equals  1 + 1 + 1/2 + 1/3 + 1/6 + 1/10 + 1/20 + 1/35 + 1/70 + 1/126 + ...
		

Crossrefs

Cf. A248182.

Programs

  • Mathematica
    r = N[Sum[1/Binomial[h, Floor[h/2]], {h, 0, 2000}], 200];
    u = RealDigits[N[r, 200]][[1]]
    (* or *)
    Sum[1/Binomial[h, h/2], {h, 0, Infinity, 2}] + Sum[1/Binomial[h, (h-1)/2], {h, 1, Infinity, 2}] // Simplify // Expand (* Vaclav Kotesovec, Jul 01 2024 *)

Formula

Equals 2 + 2*Pi/3^(3/2). - Vaclav Kotesovec, Jul 01 2024

A255648 Expansion of (a(q) + a(q^2) + a(q^3) + a(q^6) - 4) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 2, 1, 2, 0, 0, 2, 2, 2, 0, 1, 0, 2, 2, 0, 4, 0, 0, 2, 1, 2, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, 4, 0, 0, 4, 2, 0, 0, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 2, 4, 0, 0, 0, 2, 2, 4, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, 4, 2, 0, 2, 0, 0, 4, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, May 06 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^6 + 2*q^7 + q^8 + 2*q^9 + 2*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ { 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0}[[Mod[ d, 18, 1]]], { d, Divisors[ n]}]];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [ 0, 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1][d%18 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 2, p%6==1, e+1, 1-e%2)))};

Formula

Expansion of (b(q^2)^2 / b(q) + b(q^6)^2 / b(q^3) - 2) / 3 in powers of q where b() is a cubic AGM theta function.
Expansion of (psi(q)^3 / psi(q^3) + psi(q^3)^3 / psi(q^9) - 2) / 3 in powers of q where psi() is a Ramanujan theta function.
Moebius transform is period 18 sequence [ 1, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2 if e>1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k))^2 + (x^(3*k) + x^(9*k)) / (1 + x^(6*k))^2.
a(2*n) = a(n). a(3*n) = 2 * A035178(n). a(3*n + 1) = A033687(n). a(6*n + 5) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Dec 22 2023

A256923 Decimal expansion of Sum_{k>=1} (zeta(2k)/k)*(1/3)^(2k).

Original entry on oeis.org

1, 8, 9, 9, 5, 8, 6, 3, 3, 4, 0, 7, 1, 8, 0, 9, 4, 6, 4, 6, 7, 7, 9, 1, 6, 1, 7, 4, 2, 7, 4, 4, 6, 7, 2, 2, 7, 5, 1, 5, 5, 9, 1, 1, 0, 5, 4, 1, 4, 4, 2, 6, 4, 8, 0, 3, 2, 2, 6, 1, 5, 8, 0, 5, 0, 9, 2, 8, 9, 9, 5, 2, 0, 2, 6, 6, 0, 7, 3, 4, 5, 0, 7, 9, 0, 6, 2, 9, 6, 5, 0, 5, 1, 3, 1, 0, 2, 6, 2, 0, 6, 2, 0, 5, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.189958633407180946467791617427446722751559110541442648...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 272.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2*Pi/(3*Sqrt[3])], 10, 105] // First

Formula

Equals log(Gamma(2/3)*Gamma(4/3)).
Equals log(2*Pi/(3*sqrt(3))).
Equals log(A248897).
Equals -Sum_{k>=1} log(1 - 1/(3*k)^2). - Amiram Eldar, Aug 12 2020
Previous Showing 11-20 of 25 results. Next