cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A274650 Triangle read by rows: T(n,k), (0 <= k <= n), in which each term is the least nonnegative integer such that no row, column, diagonal, or antidiagonal contains a repeated term.

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 2, 4, 3, 5, 5, 1, 0, 2, 3, 4, 3, 5, 1, 6, 7, 6, 7, 2, 0, 5, 4, 8, 8, 5, 9, 4, 7, 2, 10, 6, 7, 10, 8, 3, 0, 6, 9, 5, 4, 11, 6, 12, 7, 1, 8, 3, 10, 9, 13, 9, 8, 4, 11, 2, 0, 1, 12, 6, 7, 10, 10, 11, 7, 12, 4, 3, 2, 9, 8, 14, 13, 15, 12, 9, 10, 6, 8, 1, 0, 11, 7, 4, 16, 14, 17
Offset: 0

Views

Author

Omar E. Pol, Jul 02 2016

Keywords

Comments

Similar to A274528, but the triangle here is a right triangle.
The same rule applied to an equilateral triangle gives A274528.
By analogy, the offset for both rows and columns is the same as the offset of A274528.
We construct the triangle by reading from left to right in each row, starting with T(0,0) = 0.
Presumably every diagonal and every column is also a permutation of the nonnegative integers, but the proof does not seem so straightforward. Of course neither the rows nor the antidiagonals are permutations of the nonnegative integers, since they are finite in length.
Omar E. Pol's conjecture that every column and every diagonal of the triangle is a permutation of the nonnegative integers is true: see the link. - N. J. A. Sloane, Jun 07 2017
It appears that the numbers generally appear for the first time in or near the right border of the triangle.
Theorem 1: the middle diagonal gives A000004 (the zero sequence).
Proof: T(0,0) = 0 by definition. For the next rows we have that in row 1 there are no zeros because the first term belongs to a column that contains a zero and the second term belongs to a diagonal that contains a zero. In row 2 the unique zero is T(2,1) = 0 because the preceding term belongs to a column that contains a zero and the following term belongs to a diagonal that contains a zero. Then we have two recurrences for all rows of the triangle:
a) If T(n,k) = 0 then row n+1 does not contain a zero because every term belongs to a column that contains a zero or it belongs to a diagonal that contains a zero.
b) If T(n,k) = 0 the next zero is T(n+2,k+1) because every preceding term in row n+2 is a positive integer because it belongs to a column that contains a zero and, on the other hand, the column, the diagonal and the antidiagonal of T(n+2,k+1) do not contain zeros.
Finally, since both T(n,k) = 0 and T(n+2,k+1) = 0 are located in the middle diagonal, the other terms of the middle diagonal are zeros, or in other words: the middle diagonal gives A000004 (the zero sequence). QED
Theorem 2: all zeros are in the middle diagonal.
Proof: consider the first n rows of the triangle. Every element located above or at the right-hand side of the middle diagonal must be positive because it belongs to a diagonal that contains one of the zeros of the middle diagonal. On the other hand every element located below the middle diagonal must be positive because it belongs to a column that contains one of the zeros of the middle diagonal, hence there are no zeros outside of the middle diagonal, or in other words: all zeros are in the middle diagonal. QED
From Hartmut F. W. Hoft, Jun 12 2017: (Start)
T(2k,k) = 0, for all k >= 0, and T(n,{(n-1)/2,(n+2)/2,(n-2)/2,(n+1)/2}) = 1, for all n >= 0 with n mod 8 = {1,2,4,5} respectively, and no 0's or 1's occur in other positions. The triangle of positions of 0's and 1's for this sequence is the triangle in the Comment section of A274651 with row and column indices and values shifted down by one.
The sequence of rows containing 1's is A047613 (n mod 8 = {1,2,4,5}), those containing only 1's is A016813 (n mod 8 = {1,5}), those containing both 0's and 1's is A047463 (n mod 8 = {2,4}), those containing only 0's is A047451 (n mod 8 = {0,6}), and those containing neither 0's nor 2's is A004767 (n mod 8 = {3,7}).
(End)

Examples

			Triangle begins:
   0;
   1,  2;
   3,  0,  1;
   2,  4,  3,  5;
   5,  1,  0,  2,  3;
   4,  3,  5,  1,  6,  7;
   6,  7,  2,  0,  5,  4,  8;
   8,  5,  9,  4,  7,  2, 10,  6;
   7, 10,  8,  3,  0,  6,  9,  5,  4;
  11,  6, 12,  7,  1,  8,  3, 10,  9, 13;
   9,  8,  4, 11,  2,  0,  1, 12,  6,  7, 10;
  10, 11,  7, 12,  4,  3,  2,  9,  8, 14, 13, 15;
  12,  9, 10,  6,  8,  1,  0, 11,  7,  4, 16, 14, 17;
  ...
From _Omar E. Pol_, Jun 07 2017: (Start)
The triangle may be reformatted as an isosceles triangle so that the zero sequence (A000004) appears in the central column (but note that this is NOT the way the triangle is constructed!):
.
.                    0;
.                  1,  2;
.                3,  0,  1;
.              2,  4,  3,  5;
.            5,  1,  0,  2,  3;
.          4,  3,  5,  1,  6,  7;
.        6,  7,  2,  0,  5,  4,  8;
.     8,   5,  9,  4,  7,  2, 10,  6;
.   7,  10,  8,  3,  0,  6,  9,  5,  4;
...
(End)
		

Crossrefs

Cf. A000004 (middle diagonal).
Cf. A046092 (indices of the zeros).
Every diagonal and every column of the right triangle is a permutation of A001477.
The left and right edges of the right triangle give A286294 and A286295.
Cf. A274651 is the same triangle but with 1 added to every entry.
Other sequences of the same family are A269526, A274528, A274820, A274821, A286297, A288530, A288531.
Sequences mentioned in N. J. A. Sloane's proof are A000170, A274616 and A287864.
Cf. A288384.
See A308179, A308180 for a very similar triangle.

Programs

  • Mathematica
    (* function a274651[] is defined in A274651 *)
    (* computation of rows 0 ... n-1 *)
    a274650[n_] := a274651[n]-1
    Flatten[a274650[13]] (* data *)
    TableForm[a274650[13]] (* triangle *)
    (* Hartmut F. W. Hoft, Jun 12 2017 *)
  • PARI
    See Links section.

Formula

T(n,k) = A274651(n+1,k+1) - 1.

A004443 Nimsum n + 2.

Original entry on oeis.org

2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13, 18, 19, 16, 17, 22, 23, 20, 21, 26, 27, 24, 25, 30, 31, 28, 29, 34, 35, 32, 33, 38, 39, 36, 37, 42, 43, 40, 41, 46, 47, 44, 45, 50, 51, 48, 49, 54, 55, 52, 53, 58, 59, 56, 57, 62, 63, 60, 61, 66, 67, 64, 65
Offset: 0

Views

Author

Keywords

Comments

A self-inverse permutation of the natural numbers. - Philippe Deléham, Nov 22 2016

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Crossrefs

Essentially the same as A256008 - 1.
Also the second column of A274528.
Cf. A002162.

Programs

  • Maple
    nimsum := proc(a,b) local t1,t2,t3,t4,l; t1 := convert(a+2^200,base,2); t2 := convert(b+2^200,base,2); t3 := evalm(t1+t2); map(x->x mod 2, t3); t4 := convert(evalm(%),list); l := convert(t4,base,2,10); sum(l[k]*10^(k-1), k=1..nops(l)); end;
    f := n -> n + 2*(-1)^floor(n/2); # N. J. A. Sloane, Jul 06 2019
  • Mathematica
    Table[BitXor[n, 2], {n, 0, 100}] (* T. D. Noe, Feb 09 2013 *)
  • PARI
    a(n)=bitxor(n,2) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Python
    for n in range(20): print(2^n) # Oliver Knill, Feb 16 2020

Formula

a(n) = n XOR 2. - Joerg Arndt, Feb 07 2013
G.f.: (2-x-2x^2+3x^3)/((1-x)^2(1+x^2)). - Ralf Stephan, Apr 24 2004
The sequences 'Nimsum n + m' seem to have the general o.g.f. p(x)/q(x) with p, q polynomials and q(x) = (1-x)^2*Product_{k>=0} (1+x^(2^e(k))), with Sum_{k>=0} 2^e(k) = m. - Ralf Stephan, Apr 24 2004
a(n) = n + 2(-1)^floor(n/2). - Mitchell Harris, Jan 10 2005
a(n) = OR(n,2) - AND(n,2). - Gary Detlefs, Feb 06 2013
E.g.f.: 2*(sin(x) + cos(x)) + x*exp(x). - Ilya Gutkovskiy, Jul 01 2016
Sum_{n>=0,n<>2} (-1)^n/a(n) = -log(2) = -A002162. - Peter McNair, Aug 07 2023

A274821 Hexagonal spiral constructed on the nodes of the infinite triangular net in which each term is the least positive integer such that no diagonal contains a repeated term.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 3, 1, 4, 1, 5, 4, 6, 4, 5, 6, 4, 5, 7, 6, 7, 8, 5, 7, 6, 8, 7, 4, 1, 7, 6, 8, 1, 7, 8, 6, 5, 9, 2, 4, 7, 9, 2, 10, 8, 9, 3, 5, 10, 9, 3, 11, 12, 9, 10, 11, 13, 4, 9, 10, 8, 11, 10, 3, 5, 9, 6, 11, 3, 12, 10, 12, 1, 11, 8, 9, 7, 1, 10, 8, 11, 13, 8, 2, 5, 9, 6, 12, 2, 11, 13, 10, 6, 12, 11, 14, 13, 12, 14, 15
Offset: 0

Views

Author

Omar E. Pol, Jul 09 2016

Keywords

Comments

Also spiral constructed on the infinite hexagonal grid in which each term is the least positive integer such that no diagonal of successive adjacent cells contains a repeated term. Every number is located in the center of a hexagonal cell. Every cell is also the center of three diagonals of successive adjacent cells.

Examples

			Illustration of initial terms as a spiral:
.
.                  10 - 5 - 3 - 9 - 8
.                  /                 \
.                 9   4 - 7 - 8 - 6   10
.                /   /             \   \
.               3   1   6 - 4 - 5   7   2
.              /   /   /         \   \   \
.            11   7   4   2 - 3   1   5   9
.            /   /   /   /     \   \   \   \
.          12   6   5   3   1 - 2   4   8   7
.            \   \   \   \         /   /   /
.             9   8   6   2 - 3 - 1   7   4
.              \   \   \             /   /
.              10   1   4 - 5 - 7 - 6   2
.                \   \                 /
.                11   7 - 8 - 6 - 5 - 9
.                  \
.                  13 - 4 - 9 - 10 - 8
.
		

Crossrefs

Cf. A269526 (square array), A274640 (square spiral), A274651 (right triangle), A274820, A274920, A274921, A275606, A275610.

Formula

a(n) = A274820(n) + 1.

A274651 Triangle read by rows: T(n,k), (1<=k<=n), in which each term is the least positive integer such that no row, column, diagonal, or antidiagonal contains a repeated term.

Original entry on oeis.org

1, 2, 3, 4, 1, 2, 3, 5, 4, 6, 6, 2, 1, 3, 4, 5, 4, 6, 2, 7, 8, 7, 8, 3, 1, 6, 5, 9, 9, 6, 10, 5, 8, 3, 11, 7, 8, 11, 9, 4, 1, 7, 10, 6, 5, 12, 7, 13, 8, 2, 9, 4, 11, 10, 14, 10, 9, 5, 12, 3, 1, 2, 13, 7, 8, 11, 11, 12, 8, 13, 5, 4, 3, 10, 9, 15, 14, 16, 13, 10, 11, 7, 9, 2, 1, 12, 8, 5, 17, 15, 18
Offset: 1

Views

Author

Omar E. Pol, Jul 02 2016

Keywords

Comments

Analog of A269526, but note that this is a right triangle.
The same rule applied to an equilateral triangle gives A269526.
We construct the triangle by reading from left to right in each row, starting with T(1,1) = 1.
Presumably every diagonal and every column is also a permutation of the positive integers, but the proof does not seem so straightforward. Of course, neither the rows nor the antidiagonals are permutations of the positive integers, since they are finite in length.
Omar E. Pol's conjecture that every column and every diagonal of the triangle is a permutation of the positive integers is true: see the link in A274650 (duplicated below). - N. J. A. Sloane, Jun 07 2017
It appears that the numbers generally appear for the first time in or near the right border of the triangle.
Theorem 1: the middle diagonal gives A000012 (the all 1's sequence).
Theorem 2: all 1's are in the middle diagonal.
For the proofs of the theorems 1 and 2 see the proofs of the theorems 1 and 2 of A274650 since both sequences are essentially the same.
From Bob Selcoe, Feb 15 2017: (Start)
The columns and diagonal are permutations of the natural numbers. The proofs are essentially the same as the proofs given for the columns and rows (respectively) in A269526.
All coefficients j <= 4 eventually populate in a repeating pattern toward the "middle diagonal" (i.e., relatively near the 1's); this is because we can build the triangle by j in ascending order; that is, we can start by placing all the 1's in the proper cells, then add the 2's, 3's, 4's, 5's, etc. So for i >= 0: since the 1's appear at T(1+2i, 1+i), the 2's appear at T(2+8i, 1+4i), T(3+8i, 3+4i), T(5+8i, 2+4i) and T(6+8i, 4+4i). Accordingly, after the first five 3's appear (at T(2,2), T(4,1), T(5,4), T(7,3) and T(8,6)), the remaining 3's appear at T(11+8i, 5+4i), T(12+8i, 7+4i), T(16+8i, 8+4i) and T(17+8i, 10+4i). Similarly for 4's, after the first 21 appearances, 4's appear at T(44+8i, 21+4i), T(45+8i, 24+4i), T(47+8i, 23+4i) and T(48+8i, 26+4i). So starting at T(41,21), this 16-coefficient pattern repeats at T(41+8i, 21+4i):
n/k 21 22 23 24 25 26
41 1 3
42 2
43 3 1 2
44 4 3
45 2 1 4
46 2
47 4 1
48 3 4
where the next 1 appears at T(49,25), and the pattern repeats at that point from the top left (so T(49,26) = 3, T(50,25) = 2, etc.).
Conjecture: as n gets sufficiently large, all coefficients j>4 will appear in a repeating pattern, populating all rows and diagonals around smaller j's near the "middle diagonal" (while I can offer no formal proof, it appears very likely that this is the case). (End)
From Hartmut F. W. Hoft, Jun 12 2017: (Start)
T(2k+1,k+1) = 1, for all k>=0, and T(n,{n/2,(n+3)/2,(n-1)/2,(n+2)/2}) = 2, for all n>=1 with mod(n,8) = {2,3,5,6} respectively, and no 1's or 2's occur in other positions.
Proof by (recursive) picture:
Positions in the triangle that are empty and those containing the dots of the guiding diagonals contain numbers larger than two.
n\k 1 2 3 4 5 6 7 8 10 12 14 16 18 20 22 24
1 |1
2 |2 .
3 | 1 2
4 | .
5 | 2 1 .
6 | 2 .
7 | 1 .
9 | |1 .
10 | |2 . .
11 | | 1 2 .
12 | | . .
13 | | 2 1 . .
14 | | 2 . .
15 | | 1 . .
16 |_____|______________._____.
17 | | |1 . .
18 | | |2 . . .
19 | | | 1 2 . .
20 | | | . . .
21 | | | 2 1 . . .
22 | | | 2 . . .
23 | | | 1 . . .
24 |_____|_______|____._______._____._______.
1 2 3 4 5 6 7 8 12 16 20 24
Consider the center of the triangle. In each octave of rows the columns in the first central quatrain contain a 1 and a 2, and the diagonals in the second central quatrain contain a 1 and a 2. Therefore, no 1's or 2's can occur in the respective downward quatrains of leading columns and trailing diagonals.
The sequence of rows containing 2's is A047447 (n mod 8 = {2,3,5,6}), those containing only 2's is A016825 (n mod 8 = {2,6}), those containing both 1's and 2's is A047621 (n mod 8 = {3,5}), those containing only 1's is A047522 (n mod 8 = {1,7}), and those containing neither 1's nor 2's is A008586 (n mod 8 = {0,4}).
(End)

Examples

			Triangle begins:
   1;
   2,  3;
   4,  1,  2;
   3,  5,  4,  6;
   6,  2,  1,  3,  4;
   5,  4,  6,  2,  7,  8;
   7,  8,  3,  1,  6,  5,  9;
   9,  6, 10,  5,  8,  3, 11,  7;
   8, 11,  9,  4,  1,  7, 10,  6,  5;
  12,  7, 13,  8,  2,  9,  4, 11, 10, 14;
  10,  9,  5, 12,  3,  1,  2, 13,  7,  8, 11;
  11, 12,  8, 13,  5,  4,  3, 10,  9, 15, 14, 16;
  13, 10, 11,  7,  9,  2,  1, 12,  8,  5, 17, 15, 18;
  ...
From _Omar E. Pol_, Jun 07 2017: (Start)
The triangle may be reformatted as an isosceles triangle so that the all 1's sequence (A000012) appears in the central column (but note that this is NOT the way the triangle is constructed!):
.
.                  1;
.                2,  3;
.              4,  1,  2;
.            3,  5,  4,  6;
.          6,  2,  1,  3,  4;
.        5,  4,  6,  2,  7,  8;
.      7,  8,  3,  1,  6,  5,  9;
.    9,  6, 10,  5,  8,  3, 11,  7;
.  8, 11,  9,  4,  1,  7, 10,  6,  5;
...
(End)
		

Crossrefs

Cf. A001844 (indices of the 1's).
Cf. A000012 (middle diagonal).
Every diagonal and every column of the right triangle is a permutation of A000027.
Cf. A274650 is the same triangle but with every entry minus 1.
Other sequences of the same family are A269526, A274528, A274820, A274821, A286297, A288530, A288531.
Sequences mentioned in N. J. A. Sloane's proof are A000170, A274616 and A287864.

Programs

  • Mathematica
    f[1,1] = 1; (* for 1 < n and 1 <= k <= n *)
    f[n_,k_] := f[n,k] = Module[{vals=Sort[Join[Map[f[n, #]&, Range[1, k-1]], Map[f[#, k]&, Range[k, n-1]], Map[f[n-k+#, #]&, Range[1, k-1]], Map[f[n-#, k+#]&, Range[1, Floor[(n-k)/2]]]]], c}, c=Complement[Range[1, Last[vals]], vals]; If[c=={}, Last[vals]+1, First[c]]]
    (* computation of rows 1 ... n of triangle *)
    a274651[n_] := Prepend[Table[f[i, j], {i, 2, n}, {j, 1, i}], {1}]
    Flatten[a274651[13]] (* data *)
    TableForm[a274651[13]] (* triangle *)
    (* Hartmut F. W. Hoft, Jun 12 2017 *)

Formula

T(n,k) = A274650(n-1,k-1) + 1.

A065189 "Greedy Queens" permutation of the natural numbers, inverse of A065188.

Original entry on oeis.org

1, 4, 2, 5, 3, 10, 13, 11, 6, 15, 7, 20, 8, 21, 9, 26, 29, 27, 12, 31, 34, 14, 38, 40, 16, 43, 17, 42, 18, 49, 19, 50, 54, 56, 22, 59, 23, 58, 24, 64, 25, 67, 69, 71, 28, 75, 77, 30, 80, 78, 32, 85, 33, 86, 90, 35, 91, 36, 95, 37, 99, 101, 39, 104, 102, 41, 108, 111, 113, 44
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Crossrefs

A296339 On an infinite 60-degree sector of hexagonal graph paper, fill in cells by antidiagonals so that each contains the least nonnegative integer such that no line of edge-adjacent cells contains a repeated term.

Original entry on oeis.org

0, 1, 2, 2, 0, 1, 3, 1, 2, 4, 4, 5, 0, 3, 6, 5, 3, 4, 6, 7, 8, 6, 4, 5, 0, 3, 9, 7, 7, 8, 3, 1, 2, 4, 5, 9, 8, 6, 7, 2, 0, 1, 9, 4, 3, 9, 7, 8, 5, 1, 2, 6, 10, 11, 12, 10, 11, 6, 9, 4, 0, 8, 7, 5, 13, 14, 11, 9, 10, 12, 5, 3, 13, 6, 8, 7, 15, 16, 12, 10, 11, 7
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 2017

Keywords

Comments

To find the number to enter in a cell (assuming the sector is oriented as in the illustration in the link), look at all the numbers in the cells directly above the cell, in the cells to the "North-West", and in the cells to the "South-West", and take their "mex" (the smallest missing number).
The 0-cells in the array all lie on a perfectly straight line (in contrast to the situation in A274528). Also a(n) = 0 iff n = 2*m*(m+1) for some m.

Examples

			The initial rows are as follows (however, this does not show the adjancies between the cells correctly - for that, see the illustration in the link):
   0;
   1,  2;
   2,  0,  1;
   3,  1,  2,  4;
   4,  5,  0,  3,  6;
   5,  3,  4,  6,  7,  8;
   6,  4,  5,  0,  3,  9,  7;
   7,  8,  3,  1,  2,  4,  5,  9;
   8,  6,  7,  2,  0,  1,  9,  4,  3;
   9,  7,  8,  5,  1,  2,  6, 10, 11, 12;
  10, 11,  6,  9,  4,  0, ...
  ...
For example, referring to the illustration in the link and NOT to the triangle here, consider the first 5 in the array. The reason this is 5 is because in the column of cells above that cell we can see 2,0,1, to the NW we see 3, and to the SW we see 4, and the smallest missing number is 5.
		

Crossrefs

Two analogs of this for an infinite square chessboard are A269526 (which uses positive numbers) and A274528 (which uses nonnegative numbers).
For the right edge see A296340.
The second column is A004483. - Rémy Sigrist, Dec 11 2017
The third and fourth columns are A004482 and A298801.
See also A274820.

Programs

  • Mathematica
    ab = Table[0, {13}];
    nw = ab;
    A296339 = Reap[For[s = 1, s <= Length[ab], s++, sw = 0; For[c = 1, c <= s, c++, x = BitOr[ab[[c]], BitOr[nw[[s-c+1]], sw]]; v = IntegerExponent[x+1, 2]; Sow[v]; p = 2^v; sw += p; ab[[c]] += p; nw[[s-c+1]] += p]]][[2, 1]] (* Jean-François Alcover, Dec 18 2017, after Rémy Sigrist *) (* I changed the first line, which was ab = Table[0, 13];, to make this compatible with older versions of MMA - N. J. A. Sloane, Feb 03 2018 *)
  • PARI
    See Links section.

Extensions

More terms from Rémy Sigrist, Dec 11 2017

A274630 Square array T(n,k) (n>=1, k>=1) read by antidiagonals upwards in which the number entered in a square is the smallest positive number that is different from the numbers already filled in that are queens' or knights' moves away from that square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 3, 7, 8, 2, 5, 1, 9, 4, 7, 6, 2, 10, 11, 1, 5, 7, 4, 12, 6, 3, 9, 8, 8, 9, 11, 13, 2, 10, 6, 4, 10, 12, 1, 3, 4, 7, 13, 11, 9, 9, 6, 2, 5, 8, 1, 12, 14, 3, 10, 11, 13, 3, 7, 6, 14, 9, 5, 1, 12, 15, 12, 8, 4, 14, 9, 11, 10, 3, 15, 2, 7, 13, 13, 10, 5, 1, 12, 15, 2, 16, 6, 4, 8, 14, 11
Offset: 1

Views

Author

N. J. A. Sloane following a suggestion from Joseph G. Rosenstein, Jul 07 2016

Keywords

Comments

If we only worry about queens' moves then we get the array in A269526.
Presumably, as in A269526, every column, every row, and every diagonal is a permutation of the natural numbers.
The knights only affect the squares in their immediate neighborhood, so this array will have very similar properties to A269526. The most noticeable difference is that the first column is no longer A000027, it is now A274631.
A piece that can move like a queen or a knight is known as a Maharaja. If we subtract 1 from the entries here we obtain A308201. - N. J. A. Sloane, Jun 30 2019

Examples

			The array begins:
1, 3, 6, 2, 7, 5, 8, 4, 9, 10, 15, 13, 11, 18, 12, 20, 16, 22, ...
2, 5, 8, 4, 1, 9, 6, 11, 3, 12, 7, 14, 17, 15, 10, 13, 19, 24, ...
4, 7, 9, 11, 3, 10, 13, 14, 1, 2, 8, 5, 6, 16, 22, 17, 21, 12, ...
3, 1, 10, 6, 2, 7, 12, 5, 15, 4, 16, 20, 13, 9, 11, 14, 25, 8, ...
5, 2, 12, 13, 4, 1, 9, 3, 6, 11, 10, 17, 19, 8, 7, 15, 23, 29, ...
6, 4, 11, 3, 8, 14, 10, 16, 13, 1, 2, 7, 15, 5, 24, 21, 9, 28, ...
7, 9, 1, 5, 6, 11, 2, 12, 8, 14, 3, 21, 23, 22, 4, 27, 18, 30, ...
8, 12, 2, 7, 9, 15, 1, 19, 4, 5, 6, 10, 18, 3, 26, 23, 11, 31, ...
10, 6, 3, 14, 12, 4, 5, 9, 11, 7, 1, 8, 16, 13, 2, 24, 28, 20, ...
9, 13, 4, 1, 10, 2, 7, 18, 12, 3, 17, 19, 24, 14, 20, 5, 8, 6, ...
11, 8, 5, 9, 13, 3, 15, 1, 2, 6, 20, 18, 10, 4, 17, 7, 12, 14, ...
12, 10, 7, 18, 11, 6, 4, 8, 14, 9, 5, 15, 21, 2, 16, 26, 3, 13, ...
13, 15, 17, 12, 14, 16, 18, 7, 10, 22, 11, 3, 8, 19, 23, 9, 2, 1, ...
14, 11, 19, 8, 5, 20, 3, 2, 16, 13, 12, 25, 4, 10, 6, 18, 7, 15, ...
16, 18, 21, 10, 15, 13, 11, 17, 5, 8, 9, 6, 7, 30, 25, 28, 20, 19, ...
15, 20, 13, 17, 16, 12, 19, 6, 7, 24, 18, 11, 28, 23, 14, 22, 5, 36, ...
17, 14, 22, 19, 18, 8, 20, 10, 23, 15, 4, 1, 3, 24, 13, 16, 33, 9, ...
18, 16, 23, 24, 25, 26, 14, 13, 17, 19, 22, 9, 5, 6, 8, 10, 15, 27, ...
...
Look at the entry in the second cell in row 3. It can't be a 1, because the 1 in cell(1,2) is a knight's move away, it can't be a 2, 3, 4, or 5, because it is adjacent to cells containing these numbers, and there is a 6 in cell (1,3) that is a knight's move away. The smallest free number is therefore 7.
		

Crossrefs

For first column, row, and main diagonal see A274631, A274632, A274633.
See A308883 for position of 1 in column n.
See A308201 for an essentially identical array.

Programs

  • Maple
    # Based on Alois P. Heinz's program for A269526
    A:= proc(n, k) option remember; local m, s;
             if n=1 and k=1 then 1
           else s:= {seq(A(i, k), i=1..n-1),
                     seq(A(n, j), j=1..k-1),
                     seq(A(n-t, k-t), t=1..min(n, k)-1),
                     seq(A(n+j, k-j), j=1..k-1)};
    # add knights moves
    if n >= 3            then s:={op(s),A(n-2,k+1)}; fi;
    if n >= 3 and k >= 2 then s:={op(s),A(n-2,k-1)}; fi;
    if n >= 2 and k >= 3 then s:={op(s),A(n-1,k-2)}; fi;
    if            k >= 3 then s:={op(s),A(n+1,k-2)}; fi;
                for m while m in s do od; m
             fi
         end:
    [seq(seq(A(1+d-k, k), k=1..d), d=1..15)];
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{m, s}, If[n==1 && k==1, 1, s = Join[Table[ A[i, k], {i, 1, n-1}], Table[A[n, j], {j, 1, k-1}], Table[A[n-t, k-t], {t, 1, Min[n, k]-1}], Table[A[n+j, k-j], {j, 1, k-1}]] // Union; If[n >= 3, AppendTo[s, A[n-2, k+1]] // Union ]; If[n >= 3 && k >= 2, AppendTo[s, A[n-2, k-1]] // Union]; If[n >= 2 && k >= 3, AppendTo[s, A[n-1, k-2]] // Union]; If[k >= 3, AppendTo[s, A[n+1, k-2]] // Union]; For[m = 1, MemberQ[s, m], m++]; m]]; Table[A[1+d-k, k], {d, 1, 15}, {k, 1, d}] // Flatten (* Jean-François Alcover, Mar 14 2017, translated from Maple *)

A275895 "Greedy Queens" permutation of the nonnegative integers.

Original entry on oeis.org

0, 2, 4, 1, 3, 8, 10, 12, 14, 5, 7, 18, 6, 21, 9, 24, 26, 28, 30, 11, 13, 34, 36, 38, 40, 15, 17, 44, 16, 47, 19, 50, 52, 20, 55, 57, 59, 22, 62, 23, 65, 27, 25, 69, 71, 73, 75, 77, 29, 31, 81, 83, 85, 32, 88, 33, 91, 37, 35, 95, 97, 99, 101, 39, 104, 106, 41, 109, 42, 112, 43, 115, 117, 119, 45, 122
Offset: 0

Views

Author

N. J. A. Sloane, Aug 23 2016

Keywords

Comments

This permutation is produced by a simple greedy algorithm: starting from the top left corner of an infinite chessboard placed in the fourth quadrant of the plane, walk along successive antidiagonals and place a queen in the first available position where it is not threatened by any of the existing queens. In other words, this permutation satisfies the condition that p(i+d) <> p(i)+-d for all i and d >= 1.
The rows and columns are indexed starting at 0. p(n) = k means that a queen appears in column n in row k. - N. J. A. Sloane, Aug 18 2016
All of A065188 (same for positive integers), A065189, A199134, A275884 should really have started at 0 rather than 1. Then the graph of A065188, for example, would be comparable with the graph of A002251.
That this is a permutation of the nonnegative integers follows from the proof in A269526 that every row and every column in that array is a permutation of the positive integers. In particular, every row and every column contains a 0 (which translates to a queen in the present sequence). - N. J. A. Sloane, Dec 10 2017

Crossrefs

Cf. A065188 (same for positive integers), A065189 (it's inverse), A199134 (indices of a(n) < n), A275884 (complement), A275894 (same for "nonnegative", i.e., this sequence), A275896 (same for A065189), A002251 (Wythoff pairs).

Formula

a(n) = A065188(n+1)-1.

A295563 First row of array in A274528.

Original entry on oeis.org

0, 2, 1, 5, 3, 4, 9, 10, 12, 7, 13, 17, 6, 19, 18, 8, 11, 23, 25, 22, 24, 28, 15, 14, 34, 30, 37, 39, 36, 38, 40, 16, 42, 41, 46, 45, 44, 51, 26, 20, 21, 50, 57, 52, 59, 49, 55, 61, 63, 62, 66, 65, 67, 72, 71, 58, 73, 27, 76, 75, 69, 70, 29, 86, 31, 82, 83, 32, 33, 88, 87, 91, 90, 35, 97, 92, 95
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2017

Keywords

Comments

Note this is not a list, this gives the Grundy-value at (0,n) of the Lonely Queens array A274528 regarded as a game.
It would be nice to have a formula or recurrence. Note that the first row of the analogous array corresponding to the Wythoff game, A004482, does have a simple formula.
The points seem to fall on or close to two lines, of slopes about 0.48 and 1.29 (what are these slopes?). See A295564, A295565, A295566, A295567 for the X- and Y-coordinates of the points on the two lines.

Crossrefs

Programs

  • PARI
    See Links section.

A256008 Self-inverse permutation of positive integers: 4k+1 is swapped with 4k+3, and 4k+2 with 4k+4.

Original entry on oeis.org

3, 4, 1, 2, 7, 8, 5, 6, 11, 12, 9, 10, 15, 16, 13, 14, 19, 20, 17, 18, 23, 24, 21, 22, 27, 28, 25, 26, 31, 32, 29, 30, 35, 36, 33, 34, 39, 40, 37, 38, 43, 44, 41, 42, 47, 48, 45, 46, 51, 52, 49, 50, 55, 56, 53, 54, 59, 60, 57, 58, 63, 64, 61, 62, 67, 68, 65, 66, 71, 72, 69, 70, 75, 76, 73, 74, 79
Offset: 1

Views

Author

Ivan Neretin, May 06 2015

Keywords

Comments

A lexicographically minimal sequence of distinct positive integers such that a(n)*n + 1 is a square. The same condition without the requirement for a(n) to be distinct would produce A076942.

Crossrefs

Programs

  • Magma
    [n-2*(-1)^((2*n+1-(-1)^n) div 4): n in [1..100]]; // Wesley Ivan Hurt, Oct 13 2015
    
  • Magma
    I:=[3,4,1,2]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Oct 14 2015
    
  • Magma
    /* By definition: */ &cat[[4*k+3,4*k+4,4*k+1,4*k+2]: k in [0..20]]; // Bruno Berselli, Oct 19 2015
    
  • Maple
    A256008:=n->n-2*(-1)^((2*n+1-(-1)^n)/4): seq(A256008(n), n=1..100); # Wesley Ivan Hurt, Oct 13 2015
  • Mathematica
    Table[BitXor[n - 1, 2] + 1, {n, 77}]
    CoefficientList[Series[(3 - 2*x - x^2 + 2*x^3)/((x - 1)^2*(x^2 + 1)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Oct 13 2015 *)
    LinearRecurrence[{2, -2, 2, -1}, {3, 4, 1, 2}, 80] (* Vincenzo Librandi, Oct 14 2015 *)
  • PARI
    a(n) = bitxor(n-1,2)+1 \\ Charles R Greathouse IV, May 06 2015
    
  • PARI
    Vec(x*(3-2*x-x^2+2*x^3)/((x-1)^2*(x^2+1)) + O(x^100)) \\ Altug Alkan, Oct 13 2015
    
  • PARI
    a(n) = (-1+I)*((-I)^n+I*I^n)+n \\ Colin Barker, Oct 19 2015
    
  • Python
    def a(n): return ((n-1)^2) + 1
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Mar 21 2023

Formula

From Wesley Ivan Hurt, Oct 13 2015: (Start)
G.f.: x*(3-2*x-x^2+2*x^3)/((x-1)^2*(x^2+1)).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>4.
a(n) = n-2*(-1)^((2*n+1-(-1)^n)/4). (End)
a(n) = (-1+i)*((-i)^n+i*i^n)+n, where i = sqrt(-1). - Colin Barker, Oct 19 2015
a(n) = 1 + A004443(n-1). - Alois P. Heinz, Jan 23 2022
Previous Showing 21-30 of 50 results. Next