cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A294787 Number of ways to choose a set partition of a factorization of n into distinct factors greater than one.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 12, 1, 3, 3, 5, 1, 12, 1, 5, 3, 3, 3, 12, 1, 3, 3, 12, 1, 12, 1, 5, 5, 3, 1, 19, 1, 5, 3, 5, 1, 12, 3, 12, 3, 3, 1, 26, 1, 3, 5, 10, 3, 12, 1, 5, 3, 12, 1, 26, 1, 3, 5, 5, 3, 12, 1, 19, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Total[BellB/@Length/@strfacs[n]],{n,100}]

Formula

A294786(n) <= a(n) <= A294788(n).

A320887 Number of multiset partitions of factorizations of n into factors > 1 such that all the parts have the same product.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 9, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 12, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 22, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 9, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 12, 1, 5, 1, 7, 5
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(36) = 12 multiset partitions:
  (2*2*3*3)    (6)*(2*3)  (6)*(6)  (36)
  (2*3)*(2*3)  (2*2*9)    (2*18)
               (2*3*6)    (3*12)
               (3*3*4)    (4*9)
                          (6*6)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[With[{g=GCD@@FactorInteger[n][[All,2]]},Sum[Binomial[Length[facs[n^(1/d)]]+d-1,d],{d,Divisors[g]}]],{n,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A320887(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, binomial(A001055(sqrtnint(n,d)) + d - 1, d))); \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = Sum_{d|A052409(n)} binomial(A001055(n^(1/d)) + d - 1, d).
a(n) = a(A046523(n)). - Antti Karttunen, Nov 17 2019

Extensions

Data section extended up to term a(105) by Antti Karttunen, Nov 17 2019

A358832 Number of twice-partitions of n into partitions of distinct lengths and distinct sums.

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 25, 49, 79, 154, 248, 453, 748, 1305, 2125, 3702, 5931, 9990, 16415, 26844, 43246, 70947, 113653, 182314, 292897, 464614, 739640, 1169981, 1844511, 2888427, 4562850, 7079798, 11064182, 17158151, 26676385, 41075556, 63598025, 97420873, 150043132
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)      (4)       (5)
       (11)  (21)     (22)      (32)
             (111)    (31)      (41)
             (11)(1)  (211)     (221)
                      (1111)    (311)
                      (21)(1)   (2111)
                      (111)(1)  (11111)
                                (21)(2)
                                (22)(1)
                                (3)(11)
                                (31)(1)
                                (111)(2)
                                (211)(1)
                                (111)(11)
                                (1111)(1)
		

Crossrefs

This is the case of A271619 with distinct lengths.
These multiset partitions are ranked by A326535 /\ A326533.
This is the case of A358830 with distinct sums.
For constant instead of distinct lengths and sums we have A358833.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@Total/@#&&UnsameQ@@Length/@#&]],{n,0,10}]
  • PARI
    seq(n)={ local(Cache=Map());
      my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
      my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
      z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m-1,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022

A384010 Heinz numbers of integer partitions such that it is possible to choose a family of disjoint strict partitions, one of each conjugate part.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 27, 30, 32, 36, 48, 54, 60, 64, 72, 81, 90, 96, 108, 120, 128, 144, 150, 162, 180, 192
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, conjugate (6,1), disjoint family (4,2,1), so 96 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For multiplicities instead of indices we have A382525.
These partitions are counted by A383708, without ones A383533, complement A383711.
These are the positions of positive terms in A384005.
The complement is A384011, conjugate A383710.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represent conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],pof[conj[prix[#]]]!={}&]

A384350 Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements.

Original entry on oeis.org

0, 0, 0, 1, 4, 13, 33, 81, 183, 402, 856, 1801, 3721, 7646, 15567, 31575
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2025

Keywords

Comments

Conjecture: Also the number of subsets of {1..n} such that it is possible in more than one way to choose a disjoint family of strict integer partitions, one of each element.

Examples

			For the set s = {1,5} we have 5 = 2+3, so s is counted under a(5).
The a(0) = 0 through a(5) = 13 subsets:
  .  .  .  {3}  {3}    {3}
                {4}    {4}
                {2,4}  {5}
                {3,4}  {1,5}
                       {2,4}
                       {2,5}
                       {3,4}
                       {3,5}
                       {4,5}
                       {1,4,5}
                       {2,3,5}
                       {2,4,5}
                       {3,4,5}
		

Crossrefs

The complement is counted by A326080, allowing repeats A326083.
For strict partitions of n instead of subsets of {1..n} we have A384318, ranks A384322.
First differences are A384391.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A179009 counts maximally refined strict partitions, ranks A383707.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint A357982, non-strict A299200.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]

A320886 Number of multiset partitions of integer partitions of n where all parts have the same product.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 25, 33, 54, 73, 107, 140, 207, 264, 369, 479, 652, 828, 1112, 1400, 1848, 2326, 3009, 3762, 4856, 6020, 7648, 9478, 11942, 14705, 18427, 22576, 28083, 34350, 42429, 51714, 63680, 77289, 94618, 114648, 139773, 168799, 205144, 247128, 299310, 359958, 434443, 521255, 627812, 751665, 902862
Offset: 0

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(1) = 1 through a(6) = 25 multiset partitions:
  (1)  (2)     (3)        (4)           (5)              (6)
       (11)    (12)       (13)          (14)             (15)
       (1)(1)  (111)      (22)          (23)             (24)
               (1)(11)    (112)         (113)            (33)
               (1)(1)(1)  (1111)        (122)            (114)
                          (2)(2)        (1112)           (123)
                          (1)(111)      (11111)          (222)
                          (11)(11)      (2)(12)          (1113)
                          (1)(1)(11)    (1)(1111)        (1122)
                          (1)(1)(1)(1)  (11)(111)        (3)(3)
                                        (1)(1)(111)      (11112)
                                        (1)(11)(11)      (111111)
                                        (1)(1)(1)(11)    (12)(12)
                                        (1)(1)(1)(1)(1)  (2)(112)
                                                         (2)(2)(2)
                                                         (1)(11111)
                                                         (11)(1111)
                                                         (111)(111)
                                                         (1)(1)(1111)
                                                         (1)(11)(111)
                                                         (11)(11)(11)
                                                         (1)(1)(1)(111)
                                                         (1)(1)(11)(11)
                                                         (1)(1)(1)(1)(11)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],SameQ@@Times@@@#&]],{n,8}]
  • PARI
    G(n)={my(M=Map()); for(k=1, n, forpart(p=k, my(t=vecprod(Vec(p)), z); mapput(M, t, if(mapisdefined(M, t, &z), z, 0) + x^k))); M}
    a(n)=if(n==0, 1, vecsum(apply(p->EulerT(Vecrev(p/x, n))[n], Mat(G(n))[,2]))) \\ Andrew Howroyd, Oct 26 2018

Extensions

a(13)-a(50) from Andrew Howroyd, Oct 26 2018

A320889 Number of set partitions of strict factorizations of n into factors > 1 such that all the blocks have the same product.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 6, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 5, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Examples

			The a(144) = 17 set partitions:
  (2*3*4*6)    (2*8*9)     (2*72)  (144)
  (2*6)*(3*4)  (3*6*8)     (3*48)
               (2*3*24)    (4*36)
               (2*4*18)    (6*24)
               (2*6*12)    (8*18)
               (3*4*12)    (9*16)
               (2*6)*(12)
               (3*4)*(12)
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Join@@Table[Select[sps[fac],SameQ@@Times@@@#&],{fac,strfacs[n]}]],{n,100}]

A336140 Number of ways to choose a set partition of the parts of a strict integer composition of n.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 39, 43, 73, 107, 497, 531, 951, 1345, 2125, 8789, 9929, 16953, 24723, 38347, 52717, 219131, 240461, 419715, 600075, 938689, 1278409, 1928453, 6853853, 7815657, 13205247, 19051291, 29325121, 40353995, 60084905, 80722899, 277280079, 312239953
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Crossrefs

Set partitions are A000110.
Strict compositions are A032020.
Set partitions of binary indices are A050315.
Set partitions of strict partitions are A294617.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 30 2020
  • Mathematica
    Table[Sum[BellB[Length[ctn]],{ctn,Join@@Permutations/@Select[ IntegerPartitions[n],UnsameQ@@#&]}],{n,0,10}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0,
         BellB[p]*p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k = 0..n} A000110(k) * A072574(n,k) = Sum_{k = 0..n} k! * A000110(k) * A008289(n,k).

A384011 Numbers k such that it is not possible to choose disjoint strict integer partitions of each conjugate prime index of k.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.

Examples

			The terms together with their prime indices begin:
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   19: {8}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   23: {9}
   25: {3,3}
   26: {1,6}
   28: {1,1,4}
		

Crossrefs

The conjugate is A382912.
These complement is counted by A383708, ranks A382913 or A384010.
These partitions are counted by A383710, conjugate A383711.
These are the positions of 0 in A384005, conjugate A383706.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represent conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],pof[conj[prix[#]]]=={}&]

A384391 Number of subsets of {1..n} containing n and some element that is a sum of distinct non-elements.

Original entry on oeis.org

0, 0, 1, 3, 9, 20, 48, 102, 219, 454, 945, 1920, 3925, 7921, 16008
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2025

Keywords

Examples

			The a(0) = 0 through a(6) = 20 subsets:
  .  .  .  {3}  {4}    {5}      {6}
                {2,4}  {1,5}    {1,6}
                {3,4}  {2,5}    {2,6}
                       {3,5}    {3,6}
                       {4,5}    {4,6}
                       {1,4,5}  {5,6}
                       {2,3,5}  {1,3,6}
                       {2,4,5}  {1,5,6}
                       {3,4,5}  {2,3,6}
                                {2,4,6}
                                {2,5,6}
                                {3,4,6}
                                {3,5,6}
                                {4,5,6}
                                {1,3,5,6}
                                {1,4,5,6}
                                {2,3,4,6}
                                {2,3,5,6}
                                {2,4,5,6}
                                {3,4,5,6}
		

Crossrefs

The complement with n is counted by A179822, first differences of A326080.
Partial sums are A384350.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A179009 counts maximally refined strict partitions, ranks A383707.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint A357982, non-strict A299200.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]
Previous Showing 31-40 of 47 results. Next