cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A367217 Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 24, 46, 87, 164, 308, 577, 1080, 2021, 3779, 7058, 13166, 24533, 45674, 84978, 158026, 293737, 545747, 1013467, 1881032, 3489303, 6468910, 11985988, 22195905, 41080751, 75994642, 140514019, 259693004, 479749492, 885910870, 1635281386
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 12 subsets:
  {2}  {2}    {2}    {2}
       {3}    {3}    {3}
       {1,3}  {4}    {4}
              {1,3}  {5}
              {1,4}  {1,3}
              {3,4}  {1,4}
                     {1,5}
                     {3,4}
                     {3,5}
                     {4,5}
                     {1,4,5}
                     {2,4,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A229816 counts partitions whose length is not a part, complement A002865.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A237667 counts sum-free partitions, ranks A364531.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}]

Formula

a(n) = 2^n - A367216(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A364461 Positive integers such that if prime(a)*prime(b) is a divisor, prime(a+b) is not.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Also Heinz numbers of a type of sum-free partitions not allowing re-used parts, counted by A236912.

Examples

			The prime indices of 198 are {1,2,2,5}, which is sum-free even though it is not knapsack (A299702, A299729), so 198 is in the sequence.
		

Crossrefs

Subsets of this type are counted by A085489, with re-usable parts A007865.
Subsets not of this type are counted by A093971, w/ re-usable parts A088809.
Partitions of this type are counted by A236912.
Allowing parts to be re-used gives A364347, counted by A364345.
The complement allowing parts to be re-used is A364348, counted by A363225.
The non-binary version allowing re-used parts is counted by A364350.
The complement is A364462, counted by A237113.
The non-binary version is A364531, counted by A237667, complement A364532.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]=={}&]

A365043 Number of subsets of {1..n} whose greatest element can be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

0, 0, 1, 3, 7, 12, 21, 32, 49, 70, 99, 135, 185, 245, 323, 418, 541, 688, 873, 1094, 1368, 1693, 2092, 2564, 3138, 3810, 4620, 5565, 6696, 8012, 9569, 11381, 13518, 15980, 18872, 22194, 26075, 30535, 35711, 41627, 48473, 56290, 65283, 75533, 87298, 100631, 115911, 133219
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2023

Keywords

Comments

Sets of this type may be called "positive combination-full".
Also subsets of {1..n} such that some element can be written as a (strictly) positive linear combination of the others.

Examples

			The subset S = {3,4,9} has 9 = 3*3 + 0*4, but this is not strictly positive, so S is not counted under a(9).
The subset S = {3,4,10} has 10 = 2*3 + 1*4, so S is counted under a(10).
The a(0) = 0 through a(5) = 12 subsets:
  .  .  {1,2}  {1,2}    {1,2}    {1,2}
               {1,3}    {1,3}    {1,3}
               {1,2,3}  {1,4}    {1,4}
                        {2,4}    {1,5}
                        {1,2,3}  {2,4}
                        {1,2,4}  {1,2,3}
                        {1,3,4}  {1,2,4}
                                 {1,2,5}
                                 {1,3,4}
                                 {1,3,5}
                                 {1,4,5}
                                 {2,3,5}
		

Crossrefs

The binary complement is A007865, first differences A288728.
The binary version is A093971, first differences A365070.
The nonnegative complement is A326083, first differences A124506.
The nonnegative version is A364914, first differences A365046.
First differences are A365042.
The complement is counted by A365044, first differences A365045.
Without re-usable parts we have A364534, first differences A365069.
A085489 and A364755 count subsets with no sum of two distinct elements.
A088809 and A364756 count subsets with some sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Rest[Subsets[Range[n]]],combp[Last[#],Union[Most[#]]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365043(n):
        mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
        return sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023

Formula

a(n) = 2^n - A365044(n).

Extensions

a(15)-a(35) from Chai Wah Wu, Nov 20 2023
More terms from Bert Dobbelaere, Apr 28 2025

A364348 Numbers with two possibly equal divisors prime(a) and prime(b) such that prime(a+b) is also a divisor.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Or numbers with a prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A363225.

Examples

			We have 6 because prime(1) and prime(1) are both divisors of 6, and prime(1+1) is also.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
		

Crossrefs

Subsets of this type are counted by A093971, complement A007865.
Partitions of this type are counted by A363225, strict A363226.
The complement is A364347, counted by A364345.
The complement without re-using parts is A364461, counted by A236912.
Without re-using parts we have A364462, counted by A237113.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]!={}&]

A364755 Number of subsets of {1..n} containing n but not containing the sum of any two distinct elements.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 15, 24, 41, 60, 99, 149, 236, 355, 552, 817, 1275, 1870, 2788, 4167, 6243, 9098, 13433, 19718, 28771, 42137, 60652, 88603, 127555, 185200, 261781, 382931, 541022, 783862, 1096608, 1595829, 2217467, 3223064, 4441073, 6465800, 8893694
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2023

Keywords

Examples

			The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is counted under a(8).
The a(1) = 1 through a(6) = 15 subsets:
  {1}  {2}    {3}    {4}      {5}      {6}
       {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
              {2,3}  {2,4}    {2,5}    {2,6}
                     {3,4}    {3,5}    {3,6}
                     {1,2,4}  {4,5}    {4,6}
                     {2,3,4}  {1,2,5}  {5,6}
                              {1,3,5}  {1,2,6}
                              {2,4,5}  {1,3,6}
                              {3,4,5}  {1,4,6}
                                       {2,3,6}
                                       {2,5,6}
                                       {3,4,6}
                                       {3,5,6}
                                       {4,5,6}
                                       {3,4,5,6}
		

Crossrefs

Partial sums are A085489(n) - 1, complement counted by A364534.
With re-usable parts we have A288728.
The complement with n is counted by A364756, first differences of A088809.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,10}]

Formula

First differences of A085489.

Extensions

a(21) onwards added (using A085489) by Andrew Howroyd, Jan 13 2024

A364756 Number of subsets of {1..n} containing n and some element equal to the sum of two distinct others.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 17, 40, 87, 196, 413, 875, 1812, 3741, 7640, 15567, 31493, 63666, 128284, 257977, 518045, 1039478, 2083719, 4174586, 8359837, 16735079, 33493780, 67020261, 134090173, 268250256, 536609131, 1073358893, 2146942626, 4294183434, 8588837984, 17178273355
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2023

Keywords

Examples

			The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is not counted under a(8).
The subset {2,3,4,6} has pair-sum 2 + 4 = 6, so is counted under a(6).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,3,4}    {1,4,5}      {1,5,6}
                    {1,2,3,4}  {2,3,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

Partial sums are A088809, non-binary A364534.
With re-usable parts we have differences of A093971, complement A288728.
The complement with n is counted by A364755, partial sums A085489(n) - 1.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,10}]

Formula

First differences of A088809.

Extensions

a(16) onwards added (using A088809) by Andrew Howroyd, Jan 13 2024

A365544 Number of subsets of {1..n} containing two distinct elements summing to n.

Original entry on oeis.org

0, 0, 0, 2, 4, 14, 28, 74, 148, 350, 700, 1562, 3124, 6734, 13468, 28394, 56788, 117950, 235900, 484922, 969844, 1979054, 3958108, 8034314, 16068628, 32491550, 64983100, 131029082, 262058164, 527304974, 1054609948, 2118785834, 4237571668, 8503841150, 17007682300
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2023

Keywords

Examples

			The a(1) = 0 through a(5) = 14 subsets:
  .  .  {1,2}    {1,3}      {1,4}
        {1,2,3}  {1,2,3}    {2,3}
                 {1,3,4}    {1,2,3}
                 {1,2,3,4}  {1,2,4}
                            {1,3,4}
                            {1,4,5}
                            {2,3,4}
                            {2,3,5}
                            {1,2,3,4}
                            {1,2,3,5}
                            {1,2,4,5}
                            {1,3,4,5}
                            {2,3,4,5}
                            {1,2,3,4,5}
		

Crossrefs

For strict partitions we have A140106 shifted left.
The version for partitions is A004526.
The complement is counted by A068911.
For all subsets of elements we have A365376.
Main diagonal k = n of A365541.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365381 counts subsets with a subset summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],n]&]],{n,0,10}]
  • Python
    def A365544(n): return (1<>1)<<1 if n&1 else 3**(n-1>>1)<<2) if n else 0 # Chai Wah Wu, Aug 30 2024

Formula

a(n) = 2^n - A068911(n).
From Alois P. Heinz, Aug 30 2024: (Start)
G.f.: 2*x^3/((2*x-1)*(3*x^2-1)).
a(n) = 2 * A167762(n-1) for n>=1. (End)

A365045 Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others.

Original entry on oeis.org

0, 1, 1, 2, 4, 11, 23, 53, 111, 235, 483, 988, 1998, 4036, 8114, 16289, 32645, 65389, 130887, 261923, 524014, 1048251, 2096753, 4193832, 8388034, 16776544, 33553622, 67107919, 134216597, 268434140, 536869355, 1073740012, 2147481511, 4294964834, 8589931700
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Also subsets of {1..n} containing n whose greatest element cannot be written as a positive linear combination of the others.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is not counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  {1}  {2}  {3}    {4}        {5}
               {2,3}  {3,4}      {2,5}
                      {2,3,4}    {3,5}
                      {1,2,3,4}  {4,5}
                                 {2,4,5}
                                 {3,4,5}
                                 {1,2,3,5}
                                 {1,2,4,5}
                                 {1,3,4,5}
                                 {2,3,4,5}
                                 {1,2,3,4,5}
		

Crossrefs

The nonempty case is A070880.
The nonnegative version is A124506, first differences of A326083.
The binary version is A288728, first differences of A007865.
A subclass is A341507.
The complement is counted by A365042, first differences of A365043.
First differences of A365044.
The nonnegative complement is A365046, first differences of A364914.
The binary complement is A365070, first differences of A093971.
Without re-usable parts we have A365071, first differences of A151897.
A085489 and A364755 count subsets w/o the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[combp[#[[k]],Union[Delete[#,k]]]=={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n) = A070880(n) + 1 for n > 0.

A365044 Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

1, 2, 3, 5, 9, 20, 43, 96, 207, 442, 925, 1913, 3911, 7947, 16061, 32350, 64995, 130384, 261271, 523194, 1047208, 2095459, 4192212, 8386044, 16774078, 33550622, 67104244, 134212163, 268428760, 536862900, 1073732255, 2147472267, 4294953778, 8589918612, 17179850312
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

Sets of this type may be called "positive combination-free".
Also subsets of {1..n} such that no element can be written as a (strictly) positive linear combination of the others.

Examples

			The subset S = {3,5,6,8} has 6 = 2*3 + 0*5 + 0*8 and 8 = 1*3 + 1*5 + 0*6 but neither of these is strictly positive, so S is counted under a(8).
The a(0) = 1 through a(5) = 20 subsets:
  {}  {}   {}   {}     {}         {}
      {1}  {1}  {1}    {1}        {1}
           {2}  {2}    {2}        {2}
                {3}    {3}        {3}
                {2,3}  {4}        {4}
                       {2,3}      {5}
                       {3,4}      {2,3}
                       {2,3,4}    {2,5}
                       {1,2,3,4}  {3,4}
                                  {3,5}
                                  {4,5}
                                  {2,3,4}
                                  {2,4,5}
                                  {3,4,5}
                                  {1,2,3,4}
                                  {1,2,3,5}
                                  {1,2,4,5}
                                  {1,3,4,5}
                                  {2,3,4,5}
                                  {1,2,3,4,5}
		

Crossrefs

The binary version is A007865, first differences A288728.
The binary complement is A093971, first differences A365070.
Without re-usable parts we have A151897, first differences A365071.
The nonnegative version is A326083, first differences A124506.
A subclass is A341507.
The nonnegative complement is A364914, first differences A365046.
The complement is counted by A365043, first differences A365042.
First differences are A365045.
A085489 and A364755 count subsets w/o the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],And@@Table[combp[Last[#],Union[Most[#]]]=={},{k,Length[#]}]&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365044(n):
        mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
        return n+1+sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] not in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023

Formula

a(n) = 2^n - A365043(n).

Extensions

a(15)-a(34) from Chai Wah Wu, Nov 20 2023

A365042 Number of subsets of {1..n} containing n such that some element can be written as a positive linear combination of the others.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 9, 11, 17, 21, 29, 36, 50, 60, 78, 95, 123, 147, 185, 221, 274, 325, 399, 472, 574, 672, 810, 945, 1131, 1316, 1557, 1812, 2137, 2462, 2892, 3322, 3881, 4460, 5176, 5916, 6846, 7817, 8993, 10250, 11765, 13333, 15280, 17308, 19731, 22306
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2023

Keywords

Comments

Sets of this type may be called "positive combination-full".
Also subsets of {1..n} containing n whose greatest element can be written as a positive linear combination of the others.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(7) = 11 subsets:
  .  .  {1,2}  {1,3}    {1,4}    {1,5}    {1,6}      {1,7}
               {1,2,3}  {2,4}    {1,2,5}  {2,6}      {1,2,7}
                        {1,2,4}  {1,3,5}  {3,6}      {1,3,7}
                        {1,3,4}  {1,4,5}  {1,2,6}    {1,4,7}
                                 {2,3,5}  {1,3,6}    {1,5,7}
                                          {1,4,6}    {1,6,7}
                                          {1,5,6}    {2,3,7}
                                          {2,4,6}    {2,5,7}
                                          {1,2,3,6}  {3,4,7}
                                                     {1,2,3,7}
                                                     {1,2,4,7}
		

Crossrefs

The nonnegative complement is A124506, first differences of A326083.
The binary complement is A288728, first differences of A007865.
First differences of A365043.
The complement is counted by A365045, first differences of A365044.
The nonnegative version is A365046, first differences of A364914.
Without re-usable parts we have A365069, first differences of A364534.
The binary version is A365070, first differences of A093971.
A085489 and A364755 count subsets with no sum of two distinct elements.
A088314 counts sets that can be linearly combined to obtain n.
A088809 and A364756 count subsets with some sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combp[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n) = A088314(n) - 1.
Previous Showing 11-20 of 23 results. Next