cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 340 results. Next

A353838 Numbers whose prime indices have all distinct run-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with run-sums (2,4,3), so 180 is in the sequence.
The prime indices of 315 are {2,2,3,4}, with run-sums (4,3,4), so 315 is not in the sequence.
		

Crossrefs

The version for all equal run-sums is A353833, counted by A304442.
These partitions are counted by A353837.
The complement is A353839.
The version for compositions is A353852, counted by A353850.
The greatest run-sum is given by A353862, least A353931.
The weak case is A353866, counted by A353864.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A098859 counts partitions with distinct multiplicities, ranked by A130091.
A165413 counts distinct run-sums in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents taking run-sums of a partition, compositions A353847.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Select[Range[100],UnsameQ@@Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]&]

A299200 Number of twice-partitions whose domain is the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 15, 4, 22, 3, 10, 7, 30, 2, 9, 11, 8, 5, 42, 6, 56, 1, 14, 15, 15, 4, 77, 22, 22, 3, 101, 10, 135, 7, 12, 30, 176, 2, 25, 9, 30, 11, 231, 8, 21, 5, 44, 42, 297, 6, 385, 56, 20, 1, 33, 14, 490, 15, 60, 15, 627, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(15) = 6 twice-partitions: (3)(2), (3)(11), (21)(2), (21)(11), (111)(2), (111)(11).
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= n-> mul(numbpart(pi(i[1]))^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..82);  # Alois P. Heinz, Jan 14 2021
  • Mathematica
    Table[Times@@Cases[FactorInteger[n],{p_,k_}:>PartitionsP[PrimePi[p]]^k],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1]));); factorback(f);} \\ Michel Marcus, Feb 26 2018

Formula

Multiplicative with a(prime(n)) = A000041(n).

A026792 List of juxtaposed reverse-lexicographically ordered partitions of the positive integers.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 5, 1, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 6, 1, 3, 3, 1, 4, 2, 1, 2, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 2, 1
Offset: 1

Views

Author

Keywords

Comments

The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is (list-)reversed lexicographic; see examples. [Joerg Arndt, Sep 03 2013]
Written as a triangle; row n has length A006128(n); row sums give A066186. Also written as an irregular tetrahedron in which T(n,j,k) is the k-th largest part of the j-th partition of n; the sum of column k in the slice n is A181187(n,k); right border of the slices gives A182715. - Omar E. Pol, Mar 25 2012
The equivalent sequence for compositions (ordered partitions) is A228351. - Omar E. Pol, Sep 03 2013
This is the reverse-colexicographic order of integer partitions, or the reflected reverse-lexicographic order of reversed integer partitions. It is not reverse-lexicographic order (A080577), wherein we would have (3,1) before (2,2). - Gus Wiseman, May 12 2020

Examples

			E.g. the partitions of 3 (3,2+1,1+1+1) appear as the string 3,2,1,1,1,1.
So the list begins:
1
2, 1, 1,
3, 2, 1, 1, 1, 1,
4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1,
5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms:
---------------------------------
n  j     Diagram     Partition
---------------------------------
.         _
1  1     |_|         1;
.         _ _
2  1     |_  |       2,
2  2     |_|_|       1, 1;
.         _ _ _
3  1     |_ _  |     3,
3  2     |_  | |     2, 1,
3  3     |_|_|_|     1, 1, 1;
.         _ _ _ _
4  1     |_ _    |   4,
4  2     |_ _|_  |   2, 2,
4  3     |_ _  | |   3, 1,
4  4     |_  | | |   2, 1, 1,
4  5     |_|_|_|_|   1, 1, 1, 1;
...
(End)
From _Gus Wiseman_, May 12 2020: (Start)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows. Showing these partitions as their Heinz numbers gives A334436.
                             0
                            (1)
                          (2)(11)
                        (3)(21)(111)
                   (4)(22)(31)(211)(1111)
             (5)(32)(41)(221)(311)(2111)(11111)
  (6)(33)(42)(222)(51)(321)(411)(2211)(3111)(21111)(111111)
(End)
		

Crossrefs

The reflected version for reversed partitions is A080577.
The partition minima appear to be A182715.
The graded reversed version is A211992.
The version for compositions is A228351.
The Heinz numbers of these partitions are A334436.

Programs

  • Mathematica
    revcolex[f_,c_]:=OrderedQ[PadRight[{Reverse[c],Reverse[f]}]];
    Join@@Table[Sort[IntegerPartitions[n],revcolex],{n,0,8}] (* reverse-colexicographic order, Gus Wiseman, May 10 2020 *)
    - or -
    revlex[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n],revlex],{n,0,8}] (* reflected reverse-lexicographic order, Gus Wiseman, May 12 2020 *)

Extensions

Terms 81st, 83rd and 84th corrected by Omar E. Pol, Aug 16 2009

A334439 Irregular triangle whose rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 03 2020

Keywords

Comments

First differs from A036037 for partitions of 9. Namely, this sequence has (5,2,2) before (4,4,1), while A036037 has (4,4,1) before (5,2,2).
This is the Abramowitz-Stegun ordering of integer partitions (A334301) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334302.

Examples

			The sequence of all partitions begins:
  ()      (32)     (21111)   (22111)    (4211)      (63)
  (1)     (311)    (111111)  (211111)   (3311)      (54)
  (2)     (221)    (7)       (1111111)  (3221)      (711)
  (11)    (2111)   (61)      (8)        (2222)      (621)
  (3)     (11111)  (52)      (71)       (41111)     (531)
  (21)    (6)      (43)      (62)       (32111)     (522)
  (111)   (51)     (511)     (53)       (22211)     (441)
  (4)     (42)     (421)     (44)       (311111)    (432)
  (31)    (33)     (331)     (611)      (221111)    (333)
  (22)    (411)    (322)     (521)      (2111111)   (6111)
  (211)   (321)    (4111)    (431)      (11111111)  (5211)
  (1111)  (222)    (3211)    (422)      (9)         (4311)
  (5)     (3111)   (2221)    (332)      (81)        (4221)
  (41)    (2211)   (31111)   (5111)     (72)        (3321)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
                  0
                 (1)
               (2)(11)
             (3)(21)(111)
        (4)(31)(22)(211)(1111)
  (5)(41)(32)(311)(221)(2111)(11111)
Showing partitions as their Heinz numbers (see A334438) gives:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
		

Crossrefs

The version for colex instead of revlex is A036037.
Row lengths are A036043.
Ignoring length gives A080577.
Number of distinct elements in row n appears to be A103921(n).
The version for compositions is A296774.
The Abramowitz-Stegun version (sum/length/lex) is A334301.
The version for reversed partitions is A334302.
Taking Heinz numbers gives A334438.
The version with partitions reversed is A334442.
Lexicographically ordered reversed partitions are A026791.
Lexicographically ordered partitions are A193073.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

A185974 Partitions in Abramowitz-Stegun order A036036 mapped one-to-one to positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 25, 28, 30, 27, 40, 36, 48, 64, 17, 26, 33, 35, 44, 42, 50, 45, 56, 60, 54, 80, 72, 96, 128, 19, 34, 39, 55, 49, 52, 66, 70, 63, 75, 88, 84, 100, 90, 81, 112, 120, 108, 160, 144, 192, 256, 23, 38, 51, 65, 77, 68, 78, 110, 98, 99, 105, 125, 104, 132, 140, 126, 150, 135, 176, 168, 200, 180, 162, 224, 240, 216, 320, 288, 384, 512, 29, 46, 57, 85, 91, 121, 76, 102, 130, 154, 117, 165, 147, 175, 136, 156, 220, 196, 198, 210, 250, 189, 225, 208, 264, 280, 252, 300, 270, 243, 352, 336, 400, 360, 324, 448, 480, 432, 640, 576, 768, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Feb 10 2011

Keywords

Comments

First differs from A334438 (shifted left once) at a(75) = 98, A334438(76) = 99. - Gus Wiseman, May 20 2020
This mapping of the set of all partitions of N >= 0 to {1, 2, 3, ...} (set of natural numbers) is one to one (bijective). The empty partition for N = 0 maps to 1.
A129129 seems to be analogous, except that the partition ordering A080577 is used. This ordering, however, does not care about the number of parts: e.g., 1^2,4 = 4,1^2 comes before 3^2, so a(23)=28 and a(22)=25 are interchanged.
Also Heinz numbers of all reversed integer partitions (finite weakly increasing sequences of positive integers), sorted first by sum, then by length, and finally lexicographically, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The version for non-reversed partitions is A334433. - Gus Wiseman, May 20 2020

Examples

			a(22) = 25 = prime(3)^2 because the 22nd partition in A-St order is the 2-part partition (3,3) of N = 6, because A026905(5) = 18 < 22 <= A026905(6) = 29.
a(23) = 28 = prime(1)^2*prime(4) corresponds to the partition 1+1+4 = 4+1+1 with three parts, also of N = 6.
From _Gus Wiseman_, May 20 2020: (Start)
Triangle begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
As a triangle of reversed partitions we have:
                             0
                            (1)
                          (2)(11)
                        (3)(12)(111)
                   (4)(13)(22)(112)(1111)
             (5)(14)(23)(113)(122)(1112)(11111)
  (6)(15)(24)(33)(114)(123)(222)(1113)(1122)(11112)(111111)
(End)
		

Crossrefs

Row lengths are A000041.
The constructive version is A036036.
Also Heinz numbers of the partitions in A036037.
The generalization to compositions is A124734.
The version for non-reversed partitions is A334433.
The non-reversed length-insensitive version is A334434.
The opposite version (sum/length/revlex) is A334435.
Ignoring length gives A334437.
Sorting reversed partitions by Heinz number gives A112798.
Partitions in lexicographic order are A193073.
Partitions in colexicographic order are A211992.
Graded Heinz numbers are A215366.

Programs

  • Mathematica
    Join@@Table[Times@@Prime/@#&/@Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 21 2020 *)
  • PARI
    A185974_row(n)=[vecprod([prime(i)|i<-p])|p<-partitions(n)] \\ below a helper function:
    index_of_partition(n)={for(r=0, oo, my(c = numbpart(r)); n >= c || return([r,n+1]); n -= c)}
    /* A185974(n,k), 1 <= k <= A000041(n), gives the k-th partition of n >= 0; if k is omitted, A185974(n) return the term of index n of the flattened sequence a(n >= 0).
      This function is used in other sequences (such as A122172) which need to access the n-th partition as listed in A-S order. */
    A185974(n, k=index_of_partition(n))=A185974_row(iferr(k[1], E, k=[k,k]; n))[k[2]] \\ (End)

Formula

a(n) = Product_{j=1..N(n)} p(j)^e(j), with p(j):=A000040(j) (j-th prime), and the exponent e(j) >= 0 of the part j in the n-th partition written in Abramowitz-Stegun (A-St) order, indicated in A036036. Note that j^0 is not 1 but has to be omitted in the partition. N(n) is the index (argument) of the smallest A026905-number greater than or equal to n (the index of the A026905-ceiling of n).
From Gus Wiseman, May 21 2020: (Start)
A001221(a(n)) = A103921(n).
A001222(a(n)) = A036043(n).
A056239(a(n)) = A036042(n).
A061395(a(n)) = A049085(n).
(End)

Extensions

Examples edited by M. F. Hasler, Jan 07 2024

A334301 Irregular triangle read by rows where row k is the k-th integer partition, if partitions are sorted first by sum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 5, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 6, 1, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 29 2020

Keywords

Comments

This is the Abramowitz-Stegun ordering of integer partitions when they are read in the usual (weakly decreasing) order. The case of reversed (weakly increasing) partitions is A036036.

Examples

			The sequence of all partitions in Abramowitz-Stegun order begins:
  ()      (41)     (21111)   (31111)    (3221)
  (1)     (221)    (111111)  (211111)   (3311)
  (2)     (311)    (7)       (1111111)  (4211)
  (11)    (2111)   (43)      (8)        (5111)
  (3)     (11111)  (52)      (44)       (22211)
  (21)    (6)      (61)      (53)       (32111)
  (111)   (33)     (322)     (62)       (41111)
  (4)     (42)     (331)     (71)       (221111)
  (22)    (51)     (421)     (332)      (311111)
  (31)    (222)    (511)     (422)      (2111111)
  (211)   (321)    (2221)    (431)      (11111111)
  (1111)  (411)    (3211)    (521)      (9)
  (5)     (2211)   (4111)    (611)      (54)
  (32)    (3111)   (22111)   (2222)     (63)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
                            0
                           (1)
                        (2) (1,1)
                    (3) (2,1) (1,1,1)
            (4) (2,2) (3,1) (2,1,1) (1,1,1,1)
  (5) (3,2) (4,1) (2,2,1) (3,1,1) (2,1,1,1) (1,1,1,1,1)
Showing partitions as their Heinz numbers (see A334433) gives:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  22  27  30  28  36  40  48  64
  17  35  33  26  45  50  42  44  54  60  56  72  80  96 128
		

Crossrefs

Lexicographically ordered reversed partitions are A026791.
The version for reversed partitions (sum/length/lex) is A036036.
Row lengths are A036043.
Reverse-lexicographically ordered partitions are A080577.
The version for compositions is A124734.
Lexicographically ordered partitions are A193073.
Sorting by Heinz number gives A296150, or A112798 for reversed partitions.
Sorting first by sum, then by Heinz number gives A215366.
Reversed partitions under the dual ordering (sum/length/revlex) are A334302.
Taking Heinz numbers gives A334433.
The reverse-lexicographic version is A334439 (not A036037).

Programs

  • Mathematica
    Join@@Table[Sort[IntegerPartitions[n]],{n,0,8}]

A046682 Number of cycle types of conjugacy classes of all even permutations of n elements.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 40, 52, 69, 90, 118, 151, 195, 248, 317, 400, 505, 632, 793, 985, 1224, 1512, 1867, 2291, 2811, 3431, 4186, 5084, 6168, 7456, 9005, 10836, 13026, 15613, 18692, 22316, 26613, 31659, 37619, 44601, 52815, 62416, 73680, 86809, 102162
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n with even number of even parts. There is no restriction on the odd parts.
a(n) = u(n) + v(n), n >= 2, of the Osima reference, p. 383.
Also number of partitions of n with largest part congruent to n modulo 2: a(2*n) = A027187(2*n), a(2*n-1) = A027193(2*n-1); a(n) = A000041(n) - A000701(n). - Reinhard Zumkeller, Apr 22 2006
Equivalently, number of partitions of n with number of parts having the same parity as n. - Olivier Gérard, Apr 04 2012
Also number of distinct free Young diagrams (Ferrers graphs with n nodes). Free Young diagrams are distinct when none is a rigid transformation (translation, rotation, reflection or glide reflection) of another. - Jani Melik, May 08 2016
Let the cycle type of an even permutation be represented by the partition A=(O1,O2,...,Oi,E1,E2,...,E2j), where the Os are parts with odd length and the Es are parts with even lengths, and where j may be zero, using Reinhard Zumkeller's observation that the partition associated with a cycle type of an even permutation has an even number of even parts. The set of even cycle types enumerated here can be considered a monoid under a binary operation *: Let A be as above and B=(o1,o2,...,ok,e1,e2,...,e2m). A*B is the partition (O1o1,O1o2,...,O1ok,O1e1,...,O1e2m,O2o1,...,O2e2m,...,Oio1,...,Oie2m,E1o1,...,E1e2m,...,E2je2m). This product has 2im+2jk+4jm even parts, so it represents the cycle type of an even permutation. - Richard Locke Peterson, Aug 20 2018
From Gus Wiseman, Mar 31 2022: (Start)
Also the number of integer partitions of n with Heinz number greater than or equal to that of their conjugate, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are ranked by A352488. The complement is counted by A000701. For example, the a(n) partitions for n = 1...7 are:
(1) (11) (21) (22) (221) (222) (331)
(111) (211) (311) (321) (2221)
(1111) (2111) (2211) (3211)
(11111) (3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
Also the number of integer partitions of n with Heinz number less than or equal to their conjugate, ranked by A352489. For example, the a(n) partitions for n = 1...7 are:
(1) (2) (3) (4) (5) (6) (7)
(21) (22) (32) (33) (43)
(31) (41) (42) (52)
(311) (51) (61)
(321) (322)
(411) (421)
(511)
(4111)
(End)

Examples

			1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + ...
a(3)=2 since cycle types of even permutations of 3 elements is (.)(.)(.), (...).
a(4)=3 since cycle types of even permutations of 4 elements is (.)(.)(.)(.), (...)(.), (..)(..).
a(5)=4 (free Young diagrams):
  XXXXX XXXX. XXX.. XXX..
  ..... X.... XX... X....
  ..... ..... ..... X....
  ..... ..... ..... .....
  ..... ..... ..... .....
		

Crossrefs

For the number of conjugacy classes of the alternating group A_n, n>=2, see A000702.
Cf. A118301.
A000041 counts integer partitions.
A000700 counts self-conjugate partitions, ranked by A088902.
A330644 counts non-self-conjugate partitions, ranked by A352486.
Heinz number (rank) and partition:
- A122111 = rank of conjugate.
- A296150 = parts of partition, conjugate A321649.
- A352487 = rank less than conjugate, counted by A000701.
- A352488 = rank greater than or equal to conjugate, counted by A046682.
- A352489 = rank less than or equal to conjugate, counted by A046682.
- A352490 = rank greater than conjugate, counted by A000701.
- A352491 = rank minus conjugate.

Programs

  • Maple
    seq(add((-1)^(n-k)*combinat:-numbpart(n,k),k=0..n),n=0..48); # Peter Luschny, Aug 03 2015
  • Mathematica
    max = 48; f[q_] := Sum[(-q^2)^n^2, {n, 0, max}]/Product[1-q^n, {n, 1, max}]; CoefficientList[ Series[f[q], {q, 0, max}], q] (* Jean-François Alcover, Oct 18 2011, after g.f. *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>=Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
  • PARI
    list(lim)=my(q='q);Vec(sum(n=0,sqrt(lim),(-q^2)^(n^2))/prod(n=1,lim,1-q^n)+O(q^(lim\1+1))) \\ Charles R Greathouse IV, Oct 18 2011
    
  • PARI
    {a(n) = if( n<0, 0, (numbpart(n) + polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n)) / 2)} /* Michael Somos, Jul 24 2012 */

Formula

G.f.: Sum_{n>=0} (-q^2)^(n^2) / Product_{m>=1} (1-q^m ) = ( 1/Product_{m>=1} (1-q^m) + Product_{m>=1} (1+q^(2*m-1) ) ) / 2. - Mamuka Jibladze, Sep 07 2003
a(n) = (A000041(n) + A000700(n)) / 2.
a(n) = A000041(n) - A000701(n). - Gus Wiseman, Mar 31 2022

A300121 Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions connected skew partitions.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 4, 11, 12, 16, 12, 32, 28, 31, 8, 64, 31, 128, 33, 82, 64, 256, 28, 69, 144, 69, 86, 512, 105, 1024, 16, 208, 320, 209, 82, 2048, 704, 512, 86, 4096, 318, 8192, 216, 262, 1536, 16384, 64, 465, 262, 1232, 528, 32768, 209, 588, 245, 2912, 3328
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(9) = 11 tableaux:
1 1
1 1
.
2 1   1 1   1 1   1 2
1 1   1 2   2 2   1 2
.
1 1   1 2   1 2   1 3
2 3   1 3   3 3   2 3
.
1 2   1 3
3 4   2 4
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]Table[PrimePi[p],{k}]]]];
    Table[Length[cos[Reverse[primeMS[n]]]],{n,50}]

A299755 Triangle read by rows in which row n is the strict integer partition with FDH number n.

Original entry on oeis.org

1, 2, 3, 4, 2, 1, 5, 3, 1, 6, 4, 1, 7, 3, 2, 8, 5, 1, 4, 2, 9, 10, 6, 1, 11, 4, 3, 5, 2, 7, 1, 12, 3, 2, 1, 13, 8, 1, 6, 2, 5, 3, 14, 4, 2, 1, 15, 9, 1, 7, 2, 10, 1, 5, 4, 6, 3, 16, 11, 1, 8, 2, 4, 3, 1, 17, 5, 2, 1, 18, 7, 3, 6, 4, 12, 1, 19, 9, 2, 20, 13, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.

Examples

			Sequence of strict integer partitions begins: () (1) (2) (3) (4) (2,1) (5) (3,1) (6) (4,1) (7) (3,2) (8) (5,1) (4,2) (9) (10) (6,1) (11) (4,3) (5,2) (7,1) (12) (3,2,1) (13) (8,1) (6,2) (5,3) (14) (4,2,1) (15).
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Join@@Table[Reverse[FDfactor[n]/.FDrules],{n,nn}]

A358137 Heinz number of the partial sums of the prime indices of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 7, 30, 21, 14, 11, 42, 13, 22, 33, 210, 17, 110, 19, 66, 39, 26, 23, 330, 65, 34, 273, 78, 29, 130, 31, 2310, 51, 38, 85, 546, 37, 46, 57, 390, 41, 170, 43, 102, 357, 58, 47, 2730, 133, 238, 69, 114, 53, 1870, 95, 510, 87, 62, 59, 714, 61
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      3: {2}
      6: {1,2}
      5: {3}
     10: {1,3}
      7: {4}
     30: {1,2,3}
     21: {2,4}
     14: {1,4}
     11: {5}
     42: {1,2,4}
     13: {6}
     22: {1,5}
     33: {2,5}
    210: {1,2,3,4}
     17: {7}
    110: {1,3,5}
		

Crossrefs

The sorted version is A325362.
The prime indices are rows of A358136, partial sums of rows of A112798.
A000040 lists the primes.
A000041 counts partitions, strict A000009.
A003963 multiplies prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@Accumulate[primeMS[n]],{n,100}]

Formula

A001222(a(n)) = A001222(n).
Previous Showing 31-40 of 340 results. Next