A089677
Exponential convolution of A000670(n), with A000670(0)=0, with the sequence of all ones alternating in sign.
Original entry on oeis.org
0, 1, 1, 7, 37, 271, 2341, 23647, 272917, 3543631, 51123781, 811316287, 14045783797, 263429174191, 5320671485221, 115141595488927, 2657827340990677, 65185383514567951, 1692767331628422661, 46400793659664205567, 1338843898122192101557
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jan 03 2004
From _Gus Wiseman_, Jan 06 2021: (Start)
a(n) is the number of ordered set partitions of {1..n} into an odd number of blocks. The a(1) = 1 through a(3) = 7 ordered set partitions are:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
(End)
Ordered set partitions are counted by
A000670.
The case of (unordered) set partitions is
A024429.
The complement (even-length ordered set partitions) is counted by
A052841.
A101707 counts partitions of odd positive rank.
A160786 counts odd-length partitions of odd numbers, ranked by
A300272.
A340102 counts odd-length factorizations into odd factors.
A340692 counts partitions of odd rank.
Other cases of odd length:
-
A027193 counts partitions of odd length.
-
A067659 counts strict partitions of odd length.
-
A166444 counts compositions of odd length.
-
A174726 counts ordered factorizations of odd length.
-
A332304 counts strict compositions of odd length.
-
A339890 counts factorizations of odd length.
-
h := n -> add(combinat:-eulerian1(n,k)*2^k,k=0..n):
a := n -> (h(n)-(-1)^n)/2: seq(a(n),n=0..20); # Peter Luschny, Jul 09 2015
-
Table[Sum[Binomial[n, k](-1)^(n-k)Sum[i! StirlingS2[k, i], {i, 1, k}], {k, 0, n}], {n, 0, 20}]
-
a(n)=if(n<0,0,n!*polcoeff(subst(y/(1-y^2),y,exp(x+x*O(x^n))-1),n))
-
{a(n)=polcoeff(sum(m=0,n,(2*m+1)!*x^(2*m+1)/prod(k=1,2*m+1,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
-
def A089677_list(len): # with a(0)=1
e, r = [1], [1]
for i in (1..len-1):
for k in range(i-1, -1, -1): e[k] = (e[k]*i)//(i-k)
r.append(-sum(e[j]*(-1)^(i-j) for j in (0..i-1)))
e.append(sum(e))
return r
A089677_list(21) # Peter Luschny, Jul 09 2015
A372591
Numbers whose binary weight (A000120) plus bigomega (A001222) is even.
Original entry on oeis.org
2, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 28, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 54, 57, 58, 59, 60, 61, 65, 67, 70, 73, 76, 77, 79, 85, 86, 90, 95, 96, 97, 98, 103, 106, 107, 109, 110, 111, 112, 117, 119, 123, 124, 126, 127, 128, 129
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2} 2 (1)
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,3,4} 13 (6)
{1,2,3,4} 15 (3,2)
{1,2,5} 19 (8)
{4,5} 24 (2,1,1,1)
{3,4,5} 28 (4,1,1)
{1,2,3,4,5} 31 (11)
{6} 32 (1,1,1,1,1)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{3,6} 36 (2,2,1,1)
{1,3,6} 37 (12)
{1,2,3,6} 39 (6,2)
{4,6} 40 (3,1,1,1)
{1,4,6} 41 (13)
{2,4,6} 42 (4,2,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
A372588
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.
Original entry on oeis.org
2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2} 2 (1)
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{4} 8 (1,1,1)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,2,3,4} 15 (3,2)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{1,3,5} 21 (4,2)
{4,5} 24 (2,1,1,1)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{4,6} 40 (3,1,1,1)
{1,4,6} 41 (13)
{3,4,6} 44 (5,1,1)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066208,
A160786,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372586
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{2} 2 (1)
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,2,3,4} 15 (3,2)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{3,6} 36 (2,2,1,1)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
{2,3,4,6} 46 (9,1)
{1,2,3,4,6} 47 (15)
{5,6} 48 (2,1,1,1,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]
A372589
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.
Original entry on oeis.org
3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,2,6} 35 (4,3)
{3,6} 36 (2,2,1,1)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
{1,2,3,6} 39 (6,2)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066207,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372590
Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.
Original entry on oeis.org
1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{3,4} 12 (2,1,1)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{2,5} 18 (2,2,1)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{1,3,4,5} 29 (10)
{2,3,4,5} 30 (3,2,1)
{1,2,6} 35 (4,3)
{2,3,6} 38 (8,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
A372587
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.
Original entry on oeis.org
6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{4,5} 24 (2,1,1,1)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{1,2,6} 35 (4,3)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]
A342081
Numbers without an inferior odd divisor > 1.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 107, 109, 113, 116, 118, 122, 124
Offset: 1
The divisors > 1 of 72 are {2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}, of which {3, 9} are odd and {2, 3, 4, 6, 8} are inferior, with intersection {3}, so 72 is not in the sequence.
The strictly inferior version is the same with
A001248 added.
A006530 selects the greatest prime factor.
A020639 selects the smallest prime factor.
A038548 counts superior (or inferior) divisors, with strict case
A056924.
- Odd -
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A058695 counts partitions of odd numbers.
A340101 counts factorizations into odd factors;
A340102 also has odd length.
A341594 counts strictly superior odd divisors
A341675 counts superior odd divisors.
Cf.
A000005,
A000203,
A001055,
A001221,
A001222,
A001414,
A207375,
A244991,
A300272,
A340832,
A340931.
-
Select[Range[100],Function[n,Select[Divisors[n]//Rest,OddQ[#]&<=n/#&]=={}]]
-
is(n) = #select(x -> x > 2 && x^2 <= n, factor(n)[, 1]) == 0; \\ Amiram Eldar, Nov 01 2024
-
from sympy import primefactors
A342081_list = [n for n in range(1,10**3) if len([p for p in primefactors(n) if p > 2 and p*p <= n]) == 0] # Chai Wah Wu, Mar 08 2021
A341447
Heinz numbers of integer partitions whose only even part is the smallest.
Original entry on oeis.org
3, 7, 13, 15, 19, 29, 33, 37, 43, 51, 53, 61, 69, 71, 75, 77, 79, 89, 93, 101, 107, 113, 119, 123, 131, 139, 141, 151, 161, 163, 165, 173, 177, 181, 193, 199, 201, 217, 219, 221, 223, 229, 239, 249, 251, 255, 263, 271, 281, 287, 291, 293, 299, 309, 311, 317
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
3: (2) 77: (5,4) 165: (5,3,2)
7: (4) 79: (22) 173: (40)
13: (6) 89: (24) 177: (17,2)
15: (3,2) 93: (11,2) 181: (42)
19: (8) 101: (26) 193: (44)
29: (10) 107: (28) 199: (46)
33: (5,2) 113: (30) 201: (19,2)
37: (12) 119: (7,4) 217: (11,4)
43: (14) 123: (13,2) 219: (21,2)
51: (7,2) 131: (32) 221: (7,6)
53: (16) 139: (34) 223: (48)
61: (18) 141: (15,2) 229: (50)
69: (9,2) 151: (36) 239: (52)
71: (20) 161: (9,4) 249: (23,2)
75: (3,3,2) 163: (38) 251: (54)
These partitions are counted by
A087897, shifted left once.
Terms of
A340933 can be factored into elements of this sequence.
A026805 counts partitions whose least part is even, ranked by
A340933.
A061395 selects greatest prime index.
A066207 lists numbers with all even prime indices.
A112798 lists the prime indices of each positive integer.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]
A342082
Numbers with an inferior odd divisor > 1.
Original entry on oeis.org
9, 12, 15, 18, 21, 24, 25, 27, 30, 33, 35, 36, 39, 40, 42, 45, 48, 49, 50, 51, 54, 55, 56, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 80, 81, 84, 85, 87, 90, 91, 93, 95, 96, 98, 99, 100, 102, 105, 108, 110, 111, 112, 114, 115, 117, 119, 120, 121, 123, 125
Offset: 1
The divisors > 1 of 72 are {2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}, of which {3, 9} are odd and {2, 3, 4, 6, 8} are inferior, with intersection {3}, so 72 is in the sequence.
The strictly inferior version is the same with
A001248 removed.
A006530 selects the greatest prime factor.
A020639 selects the smallest prime factor.
A038548 counts superior (or inferior) divisors, with strict case
A056924.
- Odd -
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A058695 counts partitions of odd numbers.
A340101 counts factorizations into odd factors;
A340102 also has odd length.
A341594 counts strictly superior odd divisors
A341675 counts superior odd divisors.
Cf.
A000005,
A000203,
A001055,
A001221,
A001222,
A001414,
A207375,
A244991,
A300272,
A340832,
A340931.
-
Select[Range[100],Function[n,Select[Divisors[n]//Rest,OddQ[#]&<=n/#&]!={}]]
-
is(n) = #select(x -> x > 2 && x^2 <= n, factor(n)[, 1]) > 0; \\ Amiram Eldar, Nov 01 2024
-
from sympy import primefactors
A342082_list = [n for n in range(1,10**3) if len([p for p in primefactors(n) if p > 2 and p*p <= n]) > 0] # Chai Wah Wu, Mar 09 2021
Comments