cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A322635 Number of regular graphs with loops on n labeled vertices.

Original entry on oeis.org

2, 4, 4, 24, 78, 1908, 23368, 1961200, 75942758, 25703384940, 4184912454930, 4462909435830552, 2245354417775573206, 10567193418810168583576, 24001585002447984453495392, 348615956932626441906675011568, 2412972383955442904868321667433106, 162906453913051798826796439651249753404
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. A loop adds 2 to the degree of its vertex.

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2n}],{n,6}]
  • PARI
    for(n=1, 10, print1(A322635(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(11)-a(18) from Andrew Howroyd, Aug 28 2019

A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Examples

			Triangle begins:
  1
  1       1
  1       3       1
  1       9       7       1
  1      25      37       5       1
  1      75     207      85      21       1
  1     231    1347     525     591       7       1
  1     763   10125   21385   23551    3535     113       1
  1    2619   86173  180201 1216701   31647   30997       9       1
		

Crossrefs

Programs

  • Mathematica
    Table[If[k==0,1,Sum[Binomial[n,sup]*SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[sup],{2}]}],Sequence@@Table[{x[i],0,k},{i,sup}]],{sup,n}]],{n,8},{k,0,n-1}]

Formula

T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - Andrew Howroyd, Dec 26 2020

A322784 Number of multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 8, 29, 59, 311, 892, 4983, 21863, 126813, 678626, 4446565, 27644538, 195561593, 1384705697, 10613378402, 82864870101, 686673571479, 5832742205547, 51897707277698, 474889512098459, 4514467567213008, 44152005855085601, 446355422070799305, 4638590359349994120
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal.
Also the number of factorizations into factors > 1 of primorial powers k in A100778 with sum of prime indices A056239(k) equal to n.
a(n) is the number of nonequivalent nonnegative integer matrices without zero rows or columns with equal column sums and total sum n up to permutation of rows. - Andrew Howroyd, Jan 11 2020

Examples

			The a(1) = 1 through a(4) = 29 multiset partitions:
  {{1}}   {{1,1}}     {{1,1,1}}       {{1,1,1,1}}
          {{1,2}}     {{1,2,3}}       {{1,1,2,2}}
         {{1},{1}}   {{1},{1,1}}      {{1,2,3,4}}
         {{1},{2}}   {{1},{2,3}}     {{1},{1,1,1}}
                     {{2},{1,3}}     {{1,1},{1,1}}
                     {{3},{1,2}}     {{1},{1,2,2}}
                    {{1},{1},{1}}    {{1,1},{2,2}}
                    {{1},{2},{3}}    {{1,2},{1,2}}
                                     {{1},{2,3,4}}
                                     {{1,2},{3,4}}
                                     {{1,3},{2,4}}
                                     {{1,4},{2,3}}
                                     {{2},{1,1,2}}
                                     {{2},{1,3,4}}
                                     {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                    {{1},{1},{1,1}}
                                    {{1},{1},{2,2}}
                                    {{1},{2},{1,2}}
                                    {{1},{2},{3,4}}
                                    {{1},{3},{2,4}}
                                    {{1},{4},{2,3}}
                                    {{2},{2},{1,1}}
                                    {{2},{3},{1,4}}
                                    {{2},{4},{1,3}}
                                    {{3},{4},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Sum[u[Array[Prime,d,1,Times]^(n/d),Array[Prime,d,1,Times]^(n/d)],{d,Divisors[n]}],{n,12}]

Formula

a(n) = Sum_{d|n} A001055(A002110(n/d)^d).
a(n) = Sum_{d|n} A219727(n/d, d). - Andrew Howroyd, Jan 11 2020

Extensions

a(14)-a(15) from Alois P. Heinz, Jan 16 2019
Terms a(16) and beyond from Andrew Howroyd, Jan 11 2020

A322785 Number of uniform multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 4, 12, 4, 48, 4, 183, 297, 1186, 4, 33950, 4, 139527, 1529608, 4726356, 4, 229255536, 4, 3705777010, 36279746314, 13764663019, 4, 14096735197959, 5194673049514, 7907992957755, 2977586461058927, 13426396910491001, 4, 1350012288268171854, 4, 59487352224070807287
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal. A multiset partition is uniform if all parts have the same size.

Examples

			The a(1) = 1 though a(6) = 48 multiset partitions:
  {1}  {11}    {111}      {1111}        {11111}          {111111}
       {12}    {123}      {1122}        {12345}          {111222}
       {1}{1}  {1}{1}{1}  {1234}        {1}{1}{1}{1}{1}  {112233}
       {1}{2}  {1}{2}{3}  {11}{11}      {1}{2}{3}{4}{5}  {123456}
                          {11}{22}                       {111}{111}
                          {12}{12}                       {111}{222}
                          {12}{34}                       {112}{122}
                          {13}{24}                       {112}{233}
                          {14}{23}                       {113}{223}
                          {1}{1}{1}{1}                   {122}{133}
                          {1}{1}{2}{2}                   {123}{123}
                          {1}{2}{3}{4}                   {123}{456}
                                                         {124}{356}
                                                         {125}{346}
                                                         {126}{345}
                                                         {134}{256}
                                                         {135}{246}
                                                         {136}{245}
                                                         {145}{236}
                                                         {146}{235}
                                                         {156}{234}
                                                         {11}{11}{11}
                                                         {11}{12}{22}
                                                         {11}{22}{33}
                                                         {11}{23}{23}
                                                         {12}{12}{12}
                                                         {12}{12}{33}
                                                         {12}{13}{23}
                                                         {12}{34}{56}
                                                         {12}{35}{46}
                                                         {12}{36}{45}
                                                         {13}{13}{22}
                                                         {13}{24}{56}
                                                         {13}{25}{46}
                                                         {13}{26}{45}
                                                         {14}{23}{56}
                                                         {14}{25}{36}
                                                         {14}{26}{35}
                                                         {15}{23}{46}
                                                         {15}{24}{36}
                                                         {15}{26}{34}
                                                         {16}{23}{45}
                                                         {16}{24}{35}
                                                         {16}{25}{34}
                                                         {1}{1}{1}{1}{1}{1}
                                                         {1}{1}{1}{2}{2}{2}
                                                         {1}{1}{2}{2}{3}{3}
                                                         {1}{2}{3}{4}{5}{6}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[m],SameQ@@Length/@#&]],{m,Table[Join@@Table[Range[n/d],{d}],{d,Divisors[n]}]}],{n,8}]

Formula

a(n) = 4 <=> n in { A000040 }. - Alois P. Heinz, Feb 03 2022

Extensions

More terms from Alois P. Heinz, Jan 30 2019
Terms a(14) and beyond from Andrew Howroyd, Feb 03 2022

A301920 Number of unlabeled uniform connected hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 3, 10, 55, 2369, 14026242, 29284932065996223, 468863491068204425232922367146585, 1994324729204021501147398087008429476673379600542622915802043455294332
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size.

Examples

			Non-isomorphic representatives of the a(4) = 10 hypergraphs:
  {{1,2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 26 2019

A323766 Dirichlet convolution of the integer partition numbers A000041 with the number of divisors function A000005.

Original entry on oeis.org

1, 1, 4, 5, 12, 9, 25, 17, 42, 39, 64, 58, 132, 103, 173, 200, 303, 299, 491, 492, 756, 832, 1122, 1257, 1858, 1975, 2646, 3083, 4057, 4567, 6118, 6844, 8913, 10265, 12912, 14931, 19089, 21639, 27003, 31397, 38830, 44585, 55138, 63263, 77371, 89585, 108076
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of constant multiset partitions of constant multiset partitions of integer partitions of n.

Examples

			The a(6) = 25 constant multiset partitions of constant multiset partitions of integer partitions of 6:
  ((6))
  ((52))
  ((42))
  ((33))
  ((3)(3))
  ((3))((3))
  ((411))
  ((321))
  ((222))
  ((2)(2)(2))
  ((2))((2))((2))
  ((3111))
  ((2211))
  ((21)(21))
  ((21))((21))
  ((21111))
  ((111111))
  ((111)(111))
  ((11)(11)(11))
  ((111))((111))
  ((11))((11))((11))
  ((1)(1)(1)(1)(1)(1))
  ((1)(1)(1))((1)(1)(1))
  ((1)(1))((1)(1))((1)(1))
  ((1))((1))((1))((1))((1))((1))
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,1,Sum[PartitionsP[d]*DivisorSigma[0,n/d],{d,Divisors[n]}]],{n,0,30}]
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, numbpart(d)*numdiv(n/d))); \\ Michel Marcus, Jan 28 2019

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019

A317584 Number of multiset partitions of strongly normal multisets of size n such that all blocks have the same size.

Original entry on oeis.org

1, 4, 6, 19, 14, 113, 30, 584, 1150, 4023, 112, 119866, 202, 432061, 5442765, 16646712, 594, 738090160, 980, 13160013662, 113864783987, 39049423043, 2510, 44452496723053, 19373518220009, 21970704599961, 8858890258339122, 43233899006497146, 9130, 4019875470540832643
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(4) = 19 multiset partitions:
  {{1,1,1,1}}, {{1,1},{1,1}}, {{1},{1},{1},{1}},
  {{1,1,1,2}}, {{1,1},{1,2}}, {{1},{1},{1},{2}},
  {{1,1,2,2}}, {{1,1},{2,2}}, {{1,2},{1,2}}, {{1},{1},{2},{2}},
  {{1,1,2,3}}, {{1,1},{2,3}}, {{1,2},{1,3}}, {{1},{1},{2},{3}},
  {{1,2,3,4}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}, {{1},{2},{3},{4}}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],SameQ@@Length/@#&]],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndex(n)={sum(n=1, n, x^n*sumdiv(n, d, sApplyCI(symGroupCycleIndex(d), d, symGroupCycleIndex(n/d), n/d))) + O(x*x^n)}
    StronglyNormalLabelingsSeq(cycleIndex(15)) \\ Andrew Howroyd, Jan 01 2021

Formula

a(p) = 2*A000041(p) for prime p. - Andrew Howroyd, Jan 01 2021

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 01 2021

A321698 MM-numbers of uniform regular multiset multisystems. Numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 41, 43, 47, 49, 51, 53, 55, 59, 64, 67, 73, 79, 81, 83, 85, 93, 97, 101, 103, 109, 113, 121, 123, 125, 127, 128, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 169, 177, 179
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is uniform if all parts have the same size, and regular if all vertices appear the same number of times. For example, {{1,1},{2,3},{2,3}} is uniform and regular, so its MM-number 15463 belongs to the sequence.

Examples

			The sequence of all uniform regular multiset multisystems, together with their MM-numbers, begins:
   1: {}                   33: {{1},{3}}            109: {{10}}
   2: {{}}                 41: {{6}}                113: {{1,2,3}}
   3: {{1}}                43: {{1,4}}              121: {{3},{3}}
   4: {{},{}}              47: {{2,3}}              123: {{1},{6}}
   5: {{2}}                49: {{1,1},{1,1}}        125: {{2},{2},{2}}
   7: {{1,1}}              51: {{1},{4}}            127: {{11}}
   8: {{},{},{}}           53: {{1,1,1,1}}          128: {{},{},{},{},{},{}}
   9: {{1},{1}}            55: {{2},{3}}            131: {{1,1,1,1,1}}
  11: {{3}}                59: {{7}}                137: {{2,5}}
  13: {{1,2}}              64: {{},{},{},{},{},{}}  139: {{1,7}}
  15: {{1},{2}}            67: {{8}}                149: {{3,4}}
  16: {{},{},{},{}}        73: {{2,4}}              151: {{1,1,2,2}}
  17: {{4}}                79: {{1,5}}              155: {{2},{5}}
  19: {{1,1,1}}            81: {{1},{1},{1},{1}}    157: {{12}}
  23: {{2,2}}              83: {{9}}                161: {{1,1},{2,2}}
  25: {{2},{2}}            85: {{2},{4}}            163: {{1,8}}
  27: {{1},{1},{1}}        93: {{1},{5}}            165: {{1},{2},{3}}
  29: {{1,3}}              97: {{3,3}}              167: {{2,6}}
  31: {{5}}               101: {{1,6}}              169: {{1,2},{1,2}}
  32: {{},{},{},{},{}}    103: {{2,2,2}}            177: {{1},{7}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]

A322528 Number of integer partitions of n whose parts all have the same number of prime factors (counted with multiplicity) and whose product of parts is a power of a squarefree number (A072774).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 5, 4, 7, 2, 7, 4, 7, 7, 9, 3, 10, 5, 12, 9, 8, 6, 14, 10, 12, 10, 14, 11, 20, 13, 18, 13, 16, 16, 25, 16, 19, 20, 26, 18, 30, 19, 27, 26, 27, 22, 38, 30, 37, 28, 38, 32, 43, 37, 46, 40, 47, 40, 66, 49, 58, 56, 64, 56, 73, 58, 76, 70, 85
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 5 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (52)       (44)
                    (1111)  (11111)  (222)     (1111111)  (53)
                                     (111111)             (2222)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[SameQ@@PrimeOmega/@#,SameQ@@Last/@FactorInteger[Times@@#]]&]],{n,30}]

Extensions

More terms from Alois P. Heinz, Dec 14 2018

A322788 Irregular triangle read by rows where T(n,k) is the number of uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 2, 2, 5, 4, 3, 2, 2, 27, 11, 6, 4, 2, 2, 142, 29, 8, 4, 282, 12, 3, 1073, 101, 8, 4, 2, 2, 32034, 1581, 234, 75, 20, 6, 2, 2, 136853, 2660, 10, 4, 1527528, 1985, 91, 4, 4661087, 64596, 648, 20, 5, 2, 2, 227932993, 1280333, 41945, 231, 28, 6
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset partition is uniform if all parts have the same size.

Examples

			Triangle begins:
     1
     2    2
     2    2
     5    4    3
     2    2
    27   11    6    4
     2    2
   142   29    8    4
   282   12    3
  1073  101    8    4
The multiset partitions counted under row 6:
  {123456}          {112233}          {111222}          {111111}
  {123}{456}        {112}{233}        {111}{222}        {111}{111}
  {124}{356}        {113}{223}        {112}{122}        {11}{11}{11}
  {125}{346}        {122}{133}        {11}{12}{22}      {1}{1}{1}{1}{1}{1}
  {126}{345}        {123}{123}        {12}{12}{12}
  {134}{256}        {11}{22}{33}      {1}{1}{1}{2}{2}{2}
  {135}{246}        {11}{23}{23}
  {136}{245}        {12}{12}{33}
  {145}{236}        {12}{13}{23}
  {146}{235}        {13}{13}{22}
  {156}{234}        {1}{1}{2}{2}{3}{3}
  {12}{34}{56}
  {12}{35}{46}
  {12}{36}{45}
  {13}{24}{56}
  {13}{25}{46}
  {13}{26}{45}
  {14}{23}{56}
  {14}{25}{36}
  {14}{26}{35}
  {15}{23}{46}
  {15}{24}{36}
  {15}{26}{34}
  {16}{23}{45}
  {16}{24}{35}
  {16}{25}{34}
  {1}{2}{3}{4}{5}{6}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[Join@@Table[Range[n/d],{d}]],SameQ@@Length/@#&]],{n,10},{d,Divisors[n]}]

Formula

T(n,k) = A322794(A002110(n/d)^d), where d = A027750(n,k).

Extensions

More terms from Alois P. Heinz, Jan 30 2019
Terms a(38) and beyond from Andrew Howroyd, Feb 03 2022
Edited by Peter Munn, Mar 05 2025
Previous Showing 31-40 of 58 results. Next