cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A318319 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A064989.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 5, 3, 3, 7, 3, 11, 5, 3, 35, 13, 3, 17, 9, 5, 7, 19, 5, 27, 11, 5, 15, 23, 3, 29, 63, 7, 13, 15, 9, 31, 17, 11, 15, 37, 5, 41, 21, 9, 19, 43, 35, 75, 27, 13, 33, 47, 5, 21, 25, 17, 23, 53, 9, 59, 29, 15, 231, 33, 7, 61, 39, 19, 15, 67, 15, 71, 31, 27, 51, 35, 11, 73, 105, 35, 37, 79, 15, 39, 41, 23, 35, 83, 9, 55, 57
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Comments

Multiplicative because A064989 is.
No negative terms among the first 2^20 terms.

Crossrefs

Cf. A064989, A317932 (seems to give denominators, see A261179).
Cf. also A318321.

Programs

  • PARI
    up_to = 16384;
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318319aux = DirSqrt(vector(up_to, n, A064989(n)));
    A318319(n) = numerator(v318319aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064989(n) - Sum_{d|n, d>1, d 1.

A318450 Denominators of the sequence whose Dirichlet convolution with itself yields A001511, the 2-adic valuation of 2n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 8, 2, 2, 2, 2, 2, 4, 1, 2, 8, 2, 2, 4, 2, 2, 2, 8, 2, 16, 2, 2, 4, 2, 1, 4, 2, 4, 8, 2, 2, 4, 2, 2, 4, 2, 2, 16, 2, 2, 2, 8, 8, 4, 2, 2, 16, 4, 2, 4, 2, 2, 4, 2, 2, 16, 1, 4, 4, 2, 2, 4, 4, 2, 8, 2, 2, 16, 2, 4, 4, 2, 2, 128, 2, 2, 4, 4, 2, 4, 2, 2, 16, 4, 2, 4, 2, 4, 2, 2, 8, 16, 8, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A001511, A318449 (numerators), A318451.

Programs

  • Mathematica
    a1511[n_] := IntegerExponent[2n, 2];
    f[1] = 1; f[n_] := f[n] = 1/2 (a1511[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    Table[f[n] // Denominator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 65537;
    A001511(n) = 1+valuation(n,2);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318449_51 = DirSqrt(vector(up_to, n, A001511(n)));
    A318450(n) = denominator(v318449_51[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A001511(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318451(n).

A318453 Numerators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 231, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Cf. A001227.
Cf. A318454 (gives the denominators).
Differs from A318313 for the first time at n=81, where a(81) = 1, while A318313(81) = 3.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
    Table[f[n] // Numerator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318453_54 = DirSqrt(vector(up_to, n, A001227(n)));
    A318453(n) = numerator(v318453_54[n]);
    A318454(n) = denominator(v318453_54[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318453(k) / A318454(k) ~ n/sqrt(2). - Vaclav Kotesovec, May 09 2025

A318454 Denominators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.

Original entry on oeis.org

1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 1024, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 2, 1, 8, 1, 2, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A001227.
Cf. A318453 (numerators), A318455.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
    Table[f[n] // Denominator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318453_54 = DirSqrt(vector(up_to, n, A001227(n)));
    A318454(n) = denominator(v318453_54[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318455(n).
Sum_{k=1..n} A318453(k) / a(k) ~ n/sqrt(2). - Vaclav Kotesovec, May 09 2025

A318498 Denominators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (of possibly A092520 and A293443).

Crossrefs

Cf. A061389, A318497 (numerators), A318499.
Cf. also A299150, A046644.

Programs

  • PARI
    up_to = 65537;
    A061389(n) = factorback(apply(e -> (1+eulerphi(e)),factor(n)[,2]));
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
    A318497(n) = numerator(v318497_98[n]);
    A318498(n) = denominator(v318497_98[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318499(n).

A317847 Numerators of sequence whose Dirichlet convolution with itself yields A303757, the ordinal transform of function a(1) = 0; a(n) = phi(n) for n > 1, where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 1, 1, 7, 1, 5, 1, 9, 7, 5, 1, 15, 1, 5, 1, 43, 1, 15, 1, 7, 3, 3, 1, 5, 3, 5, 9, 15, 1, 9, 1, 87, 3, 5, 1, 1, 1, 5, 3, 13, 1, 11, 1, 11, 15, 3, 1, 187, 7, 19, 1, 15, 1, 5, 3, 21, 3, 3, 1, -1, 1, 3, 11, 387, 1, 9, 1, 7, 1, 13, 1, 119, 1, 7, 19, 23, 3, 19, 1, 139, -21, 7, 1, 21, 1, 5, 1, 39, 1, 67, 3, 3, 5, 3, 5, 451, 1, 15, 19, 69, 1, 13, 1, -27, 7
Offset: 1

Views

Author

Antti Karttunen, Aug 14 2018

Keywords

Crossrefs

Cf. A000010, A303757, A046644 (denominators).

Programs

  • Mathematica
    A303757[n_] := If[n == 2, 1, Count[EulerPhi[Range[n]] - EulerPhi[n], 0]];
    f[n_] := f[n] = If[n == 1, 1, (1/2)(A303757[n] -
         Sum[If[1Jean-François Alcover, Dec 20 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v303757 = ordinal_transform(vector(up_to,n,if(1==n,0,eulerphi(n))));
    v317847 = DirSqrt(vector(up_to, n, v303757[n]));
    A317847(n) = numerator(v317847[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A303757(n) - Sum_{d|n, d>1, d 1.

A317941 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A037445, number of infinitary divisors (or i-divisors) of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, -11, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, -5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2018

Keywords

Comments

Multiplicative because A037445 is.

Crossrefs

Cf. A037445, A317934 (denominators).
Cf. also A317933, A317940.

Programs

  • PARI
    up_to = 1+(2^16);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2])) \\ From A037445
    v317941aux = DirSqrt(vector(up_to, n, A037445(n)));
    A317941(n) = numerator(v317941aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A037445(n) - Sum_{d|n, d>1, d 1.

A318313 Numerators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 231, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 3, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Cf. A068068, A318314 (denominators).
Differs from A318453 for the first time at n=81, where a(81) = 3, while A318453(81) = 1.

Programs

  • PARI
    up_to = 16384;
    A068068(n) = (2^omega(n>>valuation(n, 2))); \\ From A068068
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318313_15 = DirSqrt(vector(up_to, n, A068068(n)));
    A318313(n) = numerator(v318313_15[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A068068(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318313(k) / A318314(k) ~ 2*n/Pi. - Vaclav Kotesovec, May 10 2025

A318317 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 3, 5, 1, 1, 5, 3, 6, 3, 2, 35, 8, 1, 9, 3, 3, 5, 11, 5, 0, 3, 1, 9, 14, 1, 15, 63, 5, 4, 6, 3, 18, 9, 6, 5, 20, 3, 21, 15, 1, 11, 23, 35, -3, 0, 8, 9, 26, 1, 10, 15, 9, 7, 29, 3, 30, 15, 3, 231, 12, 5, 33, 3, 11, 3, 35, 5, 36, 9, 0, 27, 15, 3, 39, 35, 3, 10, 41, 9, 16, 21, 14, 25, 44, 1, 18, 33, 15, 23, 18, 63, 48, -3, 5, 0, 50, 4, 51, 15, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Crossrefs

Cf. A173557, A318318 (denominators).
Cf. also A317925, A317935.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 16384;
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
    A318317(n) = numerator(v318317_18[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} A318317(k) / A318318(k) ~ n^2 * sqrt(f(2)/(4*Pi*log(n))) * (1 + (1 - gamma - f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868...
f'(2)/f(2) = Sum_{p prime} 2*p*log(p) / ((p+1)*(p^2+p-2)) = 0.7254208328519472161058521308839896283514823... and gamma is the Euler-Mascheroni constant A001620. (End)

A318443 Numerators of the sequence whose Dirichlet convolution with itself yields A018804, Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n).

Original entry on oeis.org

1, 3, 5, 23, 9, 15, 13, 91, 59, 27, 21, 115, 25, 39, 45, 1451, 33, 177, 37, 207, 65, 63, 45, 455, 179, 75, 353, 299, 57, 135, 61, 5797, 105, 99, 117, 1357, 73, 111, 125, 819, 81, 195, 85, 483, 531, 135, 93, 7255, 363, 537, 165, 575, 105, 1059, 189, 1183, 185, 171, 117, 1035, 121, 183, 767, 46355, 225, 315, 133, 759, 225, 351, 141, 5369
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

Because A018804 gets only odd values on primes, A046644 gives the sequence of denominators. Because both of those sequences are multiplicative, this is also.

Crossrefs

Cf. A018804, A046644 (denominators).
Cf. also A318444.

Programs

  • Mathematica
    a18804[n_] := Sum[n EulerPhi[d]/d, {d, Divisors[n]}];
    f[1] = 1; f[n_] := f[n] = 1/2 (a18804[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    a[n_] := f[n] // Numerator;
    Array[a, 72] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318443aux = DirSqrt(vector(up_to, n, A018804(n)));
    A318443(n) = numerator(v318443aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, (1-X)^(1/2)/(1-p*X))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A018804(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318443(k) / A046644(k) ~ sqrt(3/2)*n^2/Pi. - Vaclav Kotesovec, May 10 2025
Previous Showing 11-20 of 29 results. Next