cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A055621 Number of covers of an unlabeled n-set.

Original entry on oeis.org

1, 1, 4, 34, 1952, 18664632, 12813206150470528, 33758171486592987151274638874693632, 1435913805026242504952006868879460423801146743462225386100617731367239680
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2000

Keywords

Examples

			There are 4 nonisomorphic covers of {1,2}, namely {{1},{2}}, {{1,2}}, {{1},{1,2}} and {{1},{2},{1,2}}.
From _Gus Wiseman_, Aug 14 2019: (Start)
Non-isomorphic representatives of the a(3) = 34 covers:
  {123}  {1}{23}    {1}{2}{3}      {1}{2}{3}{23}
         {13}{23}   {1}{3}{23}     {1}{2}{13}{23}
         {3}{123}   {2}{13}{23}    {1}{2}{3}{123}
         {23}{123}  {2}{3}{123}    {2}{3}{13}{23}
                    {3}{13}{23}    {1}{3}{23}{123}
                    {12}{13}{23}   {2}{3}{23}{123}
                    {1}{23}{123}   {3}{12}{13}{23}
                    {3}{23}{123}   {2}{13}{23}{123}
                    {13}{23}{123}  {3}{13}{23}{123}
                                   {12}{13}{23}{123}
.
  {1}{2}{3}{13}{23}     {1}{2}{3}{12}{13}{23}    {1}{2}{3}{12}{13}{23}{123}
  {1}{2}{3}{23}{123}    {1}{2}{3}{13}{23}{123}
  {2}{3}{12}{13}{23}    {2}{3}{12}{13}{23}{123}
  {1}{2}{13}{23}{123}
  {2}{3}{13}{23}{123}
  {3}{12}{13}{23}{123}
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 78 (2.3.39)

Crossrefs

Unlabeled set-systems are A000612 (partial sums).
The version with empty edges allowed is A003181.
The labeled version is A003465.
The T_0 case is A319637.
The connected case is A323819.
The T_1 case is A326974.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
          h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 2, b(n$2, [])-b(n-1$2, []))/2:
    seq(a(n), n=0..8);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = If[n==0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l=={}, 1, LCM@@l]], If[i<1, 0, Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
    a[n_] := If[n==0, 2, b[n, n, {}] - b[n-1, n-1, {}]]/2;
    a /@ Range[0, 8] (* Jean-François Alcover, Jan 31 2020, after Alois P. Heinz *)

Formula

a(n) = (A003180(n) - A003180(n-1))/2 = A000612(n) - A000612(n-1) for n>0.
Euler transform of A323819. - Gus Wiseman, Aug 14 2019

Extensions

More terms from David Moews (dmoews(AT)xraysgi.ims.uconn.edu) Jul 04 2002
a(0) = 1 prepended by Gus Wiseman, Aug 14 2019

A059201 Number of T_0-covers of a labeled n-set.

Original entry on oeis.org

1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 16 2001

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
From Gus Wiseman, Aug 13 2019: (Start)
A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges). For example, the a(2) = 4 covers are:
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
(End)

Crossrefs

Row sums of A059202.
Covering set-systems are A003465.
The unlabeled version is A319637.
The version with empty edges allowed is A326939.
The non-covering version is A326940.
BII-numbers of T_0 set-systems are A326947.
The same with connected instead of covering is A326948.
The T_1 version is A326961.

Programs

  • Mathematica
    Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)

Formula

a(n) = Sum_{i=0..n+1} stirling1(n+1, i)*2^(2^(i-1)-1).
a(n) = Sum_{m=0..2^n-1} A059202(n,m).
Inverse binomial transform of A326940 and exponential transform of A326948. - Gus Wiseman, Aug 13 2019

A000112 Number of partially ordered sets ("posets") with n unlabeled elements.

Original entry on oeis.org

1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284, 46749427, 1104891746, 33823827452, 1338193159771, 68275077901156, 4483130665195087
Offset: 0

Views

Author

Keywords

Comments

Also number of fixed effects ANOVA models with n factors, which may be both crossed and nested.

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are:
  {}{1}{12}{123}{1234}
  {}{1}{2}{12}{123}{1234}
  {}{1}{12}{13}{123}{1234}
  {}{1}{12}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{1234}
  {}{1}{2}{12}{123}{124}{1234}
  {}{1}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{1234}
  {}{1}{2}{12}{13}{24}{123}{124}{1234}
  {}{1}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{124}{1234}
  {}{1}{2}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234}
  {}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234}
(End)
		

References

  • G. Birkhoff, Lattice Theory, 1961, p. 4.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • J. L. Davison, Asymptotic enumeration of partial orders. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 53 (1986), 277--286. MR0885256 (88c:06001)
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. I, 2nd. ed., Chap. 3, pp. 241ff; Vol. 2, Problem 5.39, p. 88.
  • For further references concerning the enumeration of topologies and posets see under A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A006057.
Cf. A079263, A079265, A065066 (refined by maximal elements), A342447 (refined by number of arcs).
Row sums of A263859. Euler transform of A000608.

Extensions

a(15)-a(16) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jan 04 2006

A367863 Number of n-vertex labeled simple graphs with n edges and no isolated vertices.

Original entry on oeis.org

1, 0, 0, 1, 15, 222, 3760, 73755, 1657845, 42143500, 1197163134, 37613828070, 1295741321875, 48577055308320, 1969293264235635, 85852853154670693, 4005625283891276535, 199166987259400191480, 10513996906985414443720, 587316057411626070658200, 34612299496604684775762261
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2023

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 15 graphs:
  {{1,2},{1,3},{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A057500, unlabeled A001429.
The unlabeled version is A006649.
The non-covering version is A116508.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[#]==n&]],{n,0,5}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n)) \\ Andrew Howroyd, Dec 29 2023

Formula

Binomial transform is A367862.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n). - Andrew Howroyd, Dec 29 2023

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023

A319558 The squarefree dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted without multiplicity. Then a(n) is the number of non-isomorphic multiset partitions of weight n whose squarefree dual is strict (no repeated blocks).

Original entry on oeis.org

1, 1, 3, 7, 21, 55, 169, 496, 1582, 5080, 17073
Offset: 0

Views

Author

Gus Wiseman, Sep 23 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1, a(2) = 3, and a(3) = 7 multiset partitions:
1:    {{1}}
2:   {{1,1}}
    {{1},{1}}
    {{1},{2}}
3:  {{1,1,1}}
   {{1},{1,1}}
   {{1},{2,2}}
   {{2},{1,2}}
  {{1},{1},{1}}
  {{1},{2},{2}}
  {{1},{2},{3}}
		

Crossrefs

A319557 Number of non-isomorphic strict connected multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 5, 12, 30, 91, 256, 823, 2656, 9103, 31876, 116113, 432824, 1659692, 6508521, 26112327, 106927561, 446654187, 1900858001, 8236367607, 36306790636, 162724173883, 741105774720, 3428164417401, 16099059101049, 76722208278328, 370903316203353, 1818316254655097
Offset: 0

Views

Author

Gus Wiseman, Sep 23 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of non-isomorphic connected T_0 multiset partitions of weight n. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. The T_0 condition means that there are no equivalent vertices.

Examples

			Non-isomorphic representatives of the a(4) = 12 strict connected multiset partitions:
    {{1,1,1,1}}
    {{1,1,2,2}}
    {{1,2,2,2}}
    {{1,2,3,3}}
    {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{3},{1,2,3}}
   {{1,2},{2,2}}
   {{1,3},{2,3}}
  {{1},{2},{1,2}}
Non-isomorphic representatives of the a(4) = 12 connected T_0 multiset partitions:
     {{1,1,1,1}}
     {{1,2,2,2}}
    {{1},{1,1,1}}
    {{1},{1,2,2}}
    {{2},{1,2,2}}
    {{1,1},{1,1}}
    {{1,2},{2,2}}
    {{1,3},{2,3}}
   {{1},{1},{1,1}}
   {{1},{2},{1,2}}
   {{2},{2},{1,2}}
  {{1},{1},{1},{1}}
		

Crossrefs

Formula

Inverse Euler transform of A316980.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 19 2023

A326947 BII-numbers of T_0 set-systems.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 70, 71, 73, 74, 75, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all T_0 set-systems together with their BII numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  15: {{1},{2},{1,2},{3}}
  17: {{1},{1,3}}
  19: {{1},{2},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
		

Crossrefs

T_0 set-systems are counted by A326940, with unlabeled version A326946.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    TZQ[sys_]:=UnsameQ@@dual[sys];
    Select[Range[0,100],TZQ[bpe/@bpe[#]]&]
  • Python
    from itertools import count, chain, islice
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        for n in count(0):
            a,b,s = [bin_i(k) for k in bin_i(n)],[],set()
            for i in {i for i in chain.from_iterable(a)}:
                b.append([])
                for j in range(len(a)):
                    if i in a[j]:
                        b[-1].append(j)
                s.add(tuple(b[-1]))
            if len(s) == len(b):
                yield n
    A326947_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jul 25 2024

A319637 Number of non-isomorphic T_0-covers of n vertices by distinct sets.

Original entry on oeis.org

1, 1, 3, 29, 1885, 18658259
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict (no repeated elements).

Examples

			Non-isomorphic representatives of the a(3) = 29 covers:
   {{1,3},{2,3}}
   {{1},{2},{3}}
   {{1},{3},{2,3}}
   {{2},{3},{1,2,3}}
   {{2},{1,3},{2,3}}
   {{3},{1,3},{2,3}}
   {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1},{2},{3},{2,3}}
   {{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2,3}}
   {{1},{2},{1,3},{2,3}}
   {{2},{3},{1,3},{2,3}}
   {{1},{3},{2,3},{1,2,3}}
   {{2},{3},{2,3},{1,2,3}}
   {{3},{1,2},{1,3},{2,3}}
   {{2},{1,3},{2,3},{1,2,3}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,3},{2,3}}
   {{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{2,3},{1,2,3}}
   {{2},{3},{1,2},{1,3},{2,3}}
   {{1},{2},{1,3},{2,3},{1,2,3}}
   {{2},{3},{1,3},{2,3},{1,2,3}}
   {{3},{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2},{1,3},{2,3}}
   {{1},{2},{3},{1,3},{2,3},{1,2,3}}
   {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Extensions

a(5) from Max Alekseyev, Jul 13 2022

A319565 Number of non-isomorphic connected strict T_0 multiset partitions of weight n.

Original entry on oeis.org

1, 1, 1, 4, 8, 21, 62, 175, 553, 1775, 6007
Offset: 0

Views

Author

Gus Wiseman, Sep 23 2018

Keywords

Comments

In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. The T_0 condition means that there are no equivalent vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 8 multiset partitions:
1:      {{1}}
2:     {{1,1}}
3:    {{1,1,1}}
      {{1,2,2}}
     {{1},{1,1}}
     {{2},{1,2}}
4:   {{1,1,1,1}}
     {{1,2,2,2}}
    {{1},{1,1,1}}
    {{1},{1,2,2}}
    {{2},{1,2,2}}
    {{1,2},{2,2}}
    {{1,3},{2,3}}
   {{1},{2},{1,2}}
		

Crossrefs

A330100 BII-numbers of VDD-normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 15, 19, 20, 21, 23, 31, 33, 37, 51, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 79, 83, 84, 85, 87, 95, 97, 101, 115, 116, 117, 119, 127, 139, 143, 159, 179, 180, 181, 183, 191, 203, 207, 211, 212, 213, 215, 223, 225, 229, 243, 244, 245, 247
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2019

Keywords

Comments

First differs from A330099 in lacking 545 and having 179, with corresponding set-systems 545: {{1},{2,3},{2,4}} and 179: {{1},{2},{4},{1,3},{2,3}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the VDD (vertex-degrees decreasing) normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of sets is first by length and then lexicographically.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}

Examples

			The sequence of all nonempty VDD-normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  15: {1}{2}{3}{12}        67: {1}{2}{123}
  19: {1}{2}{13}           68: {12}{123}
  20: {12}{13}             69: {1}{12}{123}
  21: {1}{12}{13}          71: {1}{2}{12}{123}
  23: {1}{2}{12}{13}       75: {1}{2}{3}{123}
  31: {1}{2}{3}{12}{13}    79: {1}{2}{3}{12}{123}
  33: {1}{23}              83: {1}{2}{13}{123}
  37: {1}{12}{23}          84: {12}{13}{123}
  51: {1}{2}{13}{23}       85: {1}{12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330102.
A subset of A326754.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==sysnorm[bpe/@bpe[#]]&]
Showing 1-10 of 42 results. Next