cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A014406 Number of strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 3, 4, 4, 7, 7, 8, 13, 14, 14, 20, 20, 22, 29, 31, 31, 39, 41, 43, 52, 55, 55, 68, 68, 70, 81, 84, 88, 103, 103, 106, 119, 125, 125, 143, 143, 147, 167, 171, 171, 190, 192, 200, 218, 223, 223, 246, 252, 258, 278, 283, 283, 313, 313, 318, 343, 349, 356, 385, 385
Offset: 1

Views

Author

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(8) = 1 because we have only the following strictly increasing arithmetic progression of positive integers with at least 3 terms and sum <= 8: 1+2+3.
a(9) = 3 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 9: 1+2+3, 1+3+5, and 2+3+4.
a(10) = 4 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 10: 1+2+3, 1+3+5, 2+3+4, and 1+2+3+4.
(End)
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} A014405(k). - Sean A. Irvine, Oct 22 2018
G.f.: (g.f. of A014405)/(1-x). - Petros Hadjicostas, Sep 29 2019

Extensions

a(59)-a(67) corrected by Fausto A. C. Cariboni, Oct 02 2018

A325327 Heinz numbers of multiples of triangular partitions, or finite arithmetic progressions with offset 0.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers of the form Product_{k = 1..b} prime(k * c) for some b >= 0 and c > 0.
The enumeration of these partitions by sum is given by A007862.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   21: {2,4}
   23: {9}
   29: {10}
   30: {1,2,3}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[Append[primeptn[#],0]]&]

A049989 a(n) is the number of arithmetic progressions of positive integers, nondecreasing with sum <= n.

Original entry on oeis.org

1, 3, 6, 10, 14, 21, 26, 33, 42, 51, 58, 72, 80, 91, 107, 120, 130, 150, 161, 178, 199, 215, 228, 255, 272, 290, 316, 338, 354, 389, 406, 429, 460, 483, 508, 549, 569, 594, 630, 663, 685, 731, 754, 785, 833, 863, 888, 940, 969, 1007, 1054, 1090, 1118, 1175, 1212, 1253, 1305, 1342, 1373, 1444, 1476, 1515, 1577, 1621
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={my(w=(sqrtint(8*n+1)-1)\2+1); Vec(x/(1-x)^2 + sum(k=2, n, x^k/(1 - if(k<=w, x^(k*(k-1)/2)))/(1-x^k) + O(x*x^n))/(1-x))} \\ Andrew Howroyd, Sep 28 2019

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049988(k). [Note that the offset of A049988 is 0.]
G.f.: (-1 + g.f. of A049988)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 28 2019

A325361 Heinz numbers of integer partitions whose differences are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A320466.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   72: {1,1,1,2,2}
   76: {1,1,8}
   78: {1,2,6}
   80: {1,1,1,1,3}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],GreaterEqual@@Differences[primeptn[#]]&]

A325407 Nonprime Heinz numbers of multiples of triangular partitions, or of finite arithmetic progressions with offset 0.

Original entry on oeis.org

1, 6, 21, 30, 65, 133, 210, 273, 319, 481, 731, 1007, 1403, 1495, 2059, 2310, 2449, 3293, 4141, 4601, 4921, 5187, 5311, 6943, 8201, 9211, 10921, 12283, 13213, 14993, 15247, 16517, 19847, 22213, 24139, 25853, 28141, 29341, 29539, 30030, 31753, 37211, 40741
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers of the form Product_{k = 1...b} prime(k * c) for some b > 1 and c > 0.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      6: {1,2}
     21: {2,4}
     30: {1,2,3}
     65: {3,6}
    133: {4,8}
    210: {1,2,3,4}
    273: {2,4,6}
    319: {5,10}
    481: {6,12}
    731: {7,14}
   1007: {8,16}
   1403: {9,18}
   1495: {3,6,9}
   2059: {10,20}
   2310: {1,2,3,4,5}
   2449: {11,22}
   3293: {12,24}
   4141: {13,26}
   4601: {14,28}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],!PrimeQ[#]&&SameQ@@Differences[Prepend[primeMS[#],0]]&]

A355533 Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime(k), then row n is just (k).

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 0, 0, 0, 2, 5, 0, 1, 6, 3, 1, 0, 0, 0, 7, 1, 0, 8, 0, 2, 2, 4, 9, 0, 0, 1, 0, 5, 0, 0, 0, 3, 10, 1, 1, 11, 0, 0, 0, 0, 3, 6, 1, 0, 1, 0, 12, 7, 4, 0, 0, 2, 13, 1, 2, 14, 0, 4, 0, 1, 8, 15, 0, 0, 0, 1, 0, 2, 0
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The version where zero is prepended to the prime indices before taking differences is A287352.
One could argue that row n = 1 is empty, but adding it changes only the offset, with no effect on the data.

Examples

			Triangle begins (showing n, prime indices, differences*):
   2:    (1)       1
   3:    (2)       2
   4:   (1,1)      0
   5:    (3)       3
   6:   (1,2)      1
   7:    (4)       4
   8:  (1,1,1)    0 0
   9:   (2,2)      0
  10:   (1,3)      2
  11:    (5)       5
  12:  (1,1,2)    0 1
  13:    (6)       6
  14:   (1,4)      3
  15:   (2,3)      1
  16: (1,1,1,1)  0 0 0
For example, the prime indices of 24 are (1,1,1,2), with differences (0,0,1).
		

Crossrefs

Crossrefs found in the link are not repeated here.
Row sums are A243056.
The version for prime indices prepended by 0 is A287352.
Constant rows have indices A325328.
Strict rows have indices A325368.
Number of distinct terms in each row are 1 if prime, otherwise A355523.
Row minima are A355525, augmented A355531.
Row maxima are A355526, augmented A355535.
The augmented version is A355534, Heinz number A325351.
The version with prime-indexed rows empty is A355536, Heinz number A325352.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[PrimeQ[n],{PrimePi[n]},Differences[primeMS[n]]],{n,2,30}]

Formula

Row lengths are 1 or A001222(n) - 1 depending on whether n is prime.

A325457 Heinz numbers of integer partitions with strictly decreasing differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A320470.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Differences[primeptn[#]]&]

A325456 Heinz numbers of integer partitions with strictly increasing differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A240027.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Differences[primeptn[#]]&]

A342515 Number of strict partitions of n with constant (equal) first-quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 4, 5, 5, 6, 6, 8, 8, 9, 8, 9, 9, 11, 10, 13, 11, 12, 12, 13, 14, 14, 15, 15, 16, 18, 16, 17, 17, 19, 18, 20, 20, 22, 21, 21, 23, 23, 22, 24, 23, 24, 24, 27, 25, 26, 27, 27, 27, 28, 29, 31, 29, 30, 31, 32, 33, 35, 32, 35, 33, 35, 34, 35
Offset: 0

Views

Author

Gus Wiseman, Mar 19 2021

Keywords

Comments

Also the number of reversed strict partitions of n with constant (equal) first-quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3).

Examples

			The a(1) = 1 through a(15) = 9 partitions (A..F = 10..15):
  1   2   3    4    5    6    7     8    9    A    B    C    D     E     F
          21   31   32   42   43    53   54   64   65   75   76    86    87
                    41   51   52    62   63   73   74   84   85    95    96
                              61    71   72   82   83   93   94    A4    A5
                              421        81   91   92   A2   A3    B3    B4
                                                   A1   B1   B2    C2    C3
                                                             C1    D1    D2
                                                             931   842   E1
                                                                         8421
		

Crossrefs

The version for differences instead of quotients is A049980.
The non-strict ordered version is A342495.
The non-strict version is A342496.
The distinct instead of equal version is A342520.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A154402 counts partitions with adjacent parts x = 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A175342 counts compositions with equal differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]

A325852 Number of (strict) integer partitions of n whose differences of all degrees are nonzero.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 11, 15, 19, 19, 26, 31, 31, 41, 49, 53, 62, 75, 81, 97, 112, 124, 145, 171, 175, 215, 244, 274, 307, 344, 388, 446, 497, 561, 599, 700, 779, 881, 981, 1054, 1184, 1340, 1500, 1669, 1767, 2031, 2237, 2486, 2765, 2946, 3300
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). The zeroth differences are the sequence itself, while k-th differences for k > 0 are the differences of the (k-1)-th differences. The differences of all degrees of a sequence are the union of its zeroth through m-th differences, where m is the length of the sequence.

Examples

			The a(1) = 1 through a(11) = 11 partitions (A = 10, B = 11):
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)   (65)
                        (41)  (51)  (52)   (62)   (63)   (73)   (74)
                                    (61)   (71)   (72)   (82)   (83)
                                    (421)  (431)  (81)   (91)   (92)
                                           (521)  (621)  (532)  (A1)
                                                         (541)  (542)
                                                         (631)  (632)
                                                         (721)  (641)
                                                                (731)
                                                                (821)
		

Crossrefs

The case for only degrees > 1 is A325874.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[Union@@Table[Differences[#,i],{i,Length[#]}],0]&]],{n,0,30}]
Previous Showing 11-20 of 26 results. Next