cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A326846 Length times maximum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 3, 4, 6, 5, 6, 6, 8, 6, 4, 7, 6, 8, 9, 8, 10, 9, 8, 6, 12, 6, 12, 10, 9, 11, 5, 10, 14, 8, 8, 12, 16, 12, 12, 13, 12, 14, 15, 9, 18, 15, 10, 8, 9, 14, 18, 16, 8, 10, 16, 16, 20, 17, 12, 18, 22, 12, 6, 12, 15, 19, 21, 18, 12, 20, 10, 21, 24, 9, 24, 10, 18, 22, 15, 8, 26, 23, 16, 14, 28, 20, 20, 24
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) is the size of the minimal rectangle containing the Young digram of the integer partition with Heinz number n.

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[n]*PrimePi[FactorInteger[n][[-1,1]]],{n,100}]
  • PARI
    A326846(n) = if(1==n, 0, bigomega(n)*primepi(vecmax(factor(n)[, 1]))); \\ Antti Karttunen, Jan 18 2020

Formula

a(n) = A001222(n) * A061395(n).

Extensions

More terms from Antti Karttunen, Jan 18 2020

A271654 a(n) = Sum_{k|n} binomial(n-1,k-1).

Original entry on oeis.org

1, 2, 2, 5, 2, 17, 2, 44, 30, 137, 2, 695, 2, 1731, 1094, 6907, 2, 30653, 2, 97244, 38952, 352739, 2, 1632933, 10628, 5200327, 1562602, 20357264, 2, 87716708, 2, 303174298, 64512738, 1166803145, 1391282, 4978661179, 2, 17672631939, 2707475853, 69150651910, 2, 286754260229, 2, 1053966829029, 115133177854, 4116715363847, 2, 16892899722499, 12271514, 63207357886437
Offset: 1

Views

Author

Keywords

Comments

Also the number of compositions of n whose length divides n, i.e., compositions with integer mean, ranked by A096199. - Gus Wiseman, Sep 28 2022

Examples

			From _Gus Wiseman_, Sep 28 2022: (Start)
The a(1) = 1 through a(6) = 17 compositions with integer mean:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,1,1)  (1,3)      (1,1,1,1,1)  (1,5)
                       (2,2)                   (2,4)
                       (3,1)                   (3,3)
                       (1,1,1,1)               (4,2)
                                               (5,1)
                                               (1,1,4)
                                               (1,2,3)
                                               (1,3,2)
                                               (1,4,1)
                                               (2,1,3)
                                               (2,2,2)
                                               (2,3,1)
                                               (3,1,2)
                                               (3,2,1)
                                               (4,1,1)
                                               (1,1,1,1,1,1)
(End)
		

Crossrefs

Cf. A056045.
The version for nonempty subsets is A051293, geometric A326027.
The version for partitions is A067538, ranked by A316413, strict A102627.
These compositions are ranked by A096199.
The version for factorizations is A326622, geometric A326028.
A011782 counts compositions.
A067539 = partitions w integer geo mean, ranked by A326623, strict A326625.
A100346 counts compositions into divisors, partitions A018818.

Programs

  • Maple
    a:= n-> add(binomial(n-1, d-1), d=numtheory[divisors](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 03 2023
  • Mathematica
    Table[Length[Join @@ Permutations/@Select[IntegerPartitions[n],IntegerQ[Mean[#]]&]],{n,15}] (* Gus Wiseman, Sep 28 2022 *)
  • PARI
    a(n)=sumdiv(n,k,binomial(n-1,k-1))

A326839 Numerator of A056239(n)/A061395(n) where A056239 is sum of prime indices and A061395 is maximum prime index.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 2, 1, 5, 5, 4, 1, 5, 1, 5, 3, 6, 1, 5, 2, 7, 3, 3, 1, 2, 1, 5, 7, 8, 7, 3, 1, 9, 4, 2, 1, 7, 1, 7, 7, 10, 1, 3, 2, 7, 9, 4, 1, 7, 8, 7, 5, 11, 1, 7, 1, 12, 2, 6, 3, 8, 1, 9, 11, 2, 1, 7, 1, 13, 8, 5, 9, 3, 1, 7, 4, 14, 1, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

This is a dual form of the average of an integer partition specified by its Heinz number: A326567/A326568.

Examples

			The sequence of fractions begins: 0, 1, 1, 2, 1, 3/2, 1, 3, 2, 4/3, 1, 2, 1, 5/4, 5/3, 4, 1, 5/2, 1, 5/3.
		

Crossrefs

Denominators are A326840.
Positions of 1's are A000040.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Numerator[Table[Total[primeMS[n]]/Max@@primeMS[n],{n,100}]]

A326840 Denominator of A056239(n)/A061395(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 2, 1, 3, 2, 5, 1, 2, 1, 6, 1, 2, 1, 1, 1, 1, 5, 7, 4, 1, 1, 8, 3, 1, 1, 4, 1, 5, 3, 9, 1, 1, 1, 3, 7, 3, 1, 2, 5, 4, 4, 10, 1, 3, 1, 11, 1, 1, 2, 5, 1, 7, 9, 1, 1, 2, 1, 12, 3, 4, 5, 2, 1, 3, 1, 13, 1, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

This is a dual form of the average of an integer partition specified by its Heinz number: A326567/A326568.

Examples

			The sequence of fractions begins: 0, 1, 1, 2, 1, 3/2, 1, 3, 2, 4/3, 1, 2, 1, 5/4, 5/3, 4, 1, 5/2, 1, 5/3.
		

Crossrefs

Positions of 1's are A326836.
Numerators are A326839.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Denominator[Table[Total[primeMS[n]]/Max@@primeMS[n],{n,100}]]

A340827 Number of strict integer partitions of n into divisors of n whose length also divides n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 18, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 17, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 12, 1, 1, 1, 3, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Comments

The first element not in A326715 that is however a Heinz number of these partitions is 273.

Examples

			The a(n) partitions for n = 6, 12, 24, 90, 84:
  6       12        24            90                      84
  3,2,1   6,4,2     12,8,4        45,30,15                42,28,14
          6,3,2,1   12,6,4,2      45,30,9,5,1             42,21,14,7
                    12,8,3,1      45,18,15,9,3            42,28,12,2
                    8,6,4,3,2,1   45,30,10,3,2            42,28,6,4,3,1
                                  45,18,15,10,2           42,28,7,4,2,1
                                  45,30,6,5,3,1           42,14,12,7,6,3
                                  45,30,9,3,2,1           42,21,12,4,3,2
                                  45,15,10,9,6,5          42,21,12,6,2,1
                                  45,18,10,9,5,3          42,21,14,4,2,1
                                  45,18,10,9,6,2          28,21,14,12,6,3
                                  45,18,15,6,5,1          28,21,14,12,7,2
                                  45,18,15,9,2,1          42,21,7,6,4,3,1
                                  30,18,15,10,6,5,3,2,1   42,14,12,7,4,3,2
                                                          42,14,12,7,6,2,1
                                                          28,21,14,12,4,3,2
                                                          28,21,14,12,6,2,1
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A326842 (A326847).
A018818 = partitions using divisors (A326841).
A047993 = balanced partitions (A106529).
A067538 = partitions whose length/maximum divides sum (A316413/A326836).
A072233 = partitions by sum and length, with strict case A008289.
A102627 = strict partitions whose length divides sum.
A326850 = strict partitions whose maximum part divides sum.
A326851 = strict partitions w/ length and max dividing sum.
A340828 = strict partitions w/ length divisible by max.
A340829 = strict partitions w/ Heinz number divisible by sum.
A340830 = strict partitions w/ parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,All,Divisors[n]],UnsameQ@@#&&Divisible[n,Length[#]]&]],{n,30}]
  • PARI
    A340827(n, divsleft=List(divisors(n)), rest=n, len=0) = if(rest<=0, !rest && !(n%len), my(s=0, d); forstep(i=#divsleft, 1, -1, d = divsleft[i]; listpop(divsleft,i); if(rest>=d, s += A340827(n, divsleft, rest-d, 1+len))); (s)); \\ Antti Karttunen, Feb 22 2023
    
  • Scheme
    ;; See the Links-section. - Antti Karttunen, Feb 22 2023

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 22 2023

A359360 Length times minimum part of the integer partition with Heinz number n. Least prime index of n times number of prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 2, 5, 3, 6, 2, 4, 4, 7, 3, 8, 3, 4, 2, 9, 4, 6, 2, 6, 3, 10, 3, 11, 5, 4, 2, 6, 4, 12, 2, 4, 4, 13, 3, 14, 3, 6, 2, 15, 5, 8, 3, 4, 3, 16, 4, 6, 4, 4, 2, 17, 4, 18, 2, 6, 6, 6, 3, 19, 3, 4, 3, 20, 5, 21, 2, 6, 3, 8, 3, 22, 5, 8, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2022

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n.

Examples

			The partition with Heinz number 7865 is (6,5,5,3), so a(7865) = 4*3 = 12.
		

Crossrefs

Difference of A056239 and A359358.
The opposite version is A326846.
A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, length A001222, sum A056239.
A243055 subtracts the least prime index from the greatest.
A358195 gives Heinz numbers of rows of A358172, even bisection A241916.

Programs

  • Mathematica
    Table[PrimeOmega[n]*PrimePi[FactorInteger[n][[1,1]]],{n,100}]
  • PARI
    a(n) = if (n==1, 0, my(f=factor(n)); bigomega(f)*primepi(f[1, 1])); \\ Michel Marcus, Dec 28 2022

Formula

a(n) = A001222(n) * A055396(n).

A361866 Number of set partitions of {1..n} with block-means summing to an integer.

Original entry on oeis.org

1, 1, 1, 3, 8, 22, 75, 267, 1119, 4965, 22694, 117090, 670621, 3866503, 24113829, 161085223, 1120025702, 8121648620, 62083083115, 492273775141, 4074919882483
Offset: 0

Views

Author

Gus Wiseman, Apr 04 2023

Keywords

Examples

			The a(1) = 1 through a(4) = 8 set partitions:
  {{1}}  {{1}{2}}  {{123}}      {{1}{234}}
                   {{13}{2}}    {{12}{34}}
                   {{1}{2}{3}}  {{123}{4}}
                                {{13}{24}}
                                {{14}{23}}
                                {{1}{24}{3}}
                                {{13}{2}{4}}
                                {{1}{2}{3}{4}}
The set partition y = {{1,2},{3,4}} has block-means {3/2,7/2}, with sum 5, so y is counted under a(4).
		

Crossrefs

For mean instead of sum we have A361865, for median A361864.
For median instead of mean we have A361911.
A000110 counts set partitions.
A067538 counts partitions with integer mean, ranks A326836, strict A102627.
A308037 counts set partitions with integer mean block-size.
A327475 counts subsets with integer mean, median A000975.
A327481 counts subsets by mean, median A013580.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],IntegerQ[Total[Mean/@#]]&]],{n,6}]

Extensions

a(14)-a(20) from Christian Sievers, May 12 2025

A340693 Number of integer partitions of n where each part is a divisor of the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 5, 7, 7, 10, 10, 14, 14, 17, 19, 24, 24, 32, 33, 42, 43, 58, 59, 75, 79, 98, 104, 124, 128, 156, 166, 196, 204, 239, 251, 292, 306, 352, 372, 426, 445, 514, 543, 616, 652, 745, 790, 896, 960, 1080, 1162, 1311, 1400, 1574, 1692, 1892
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2021

Keywords

Comments

The only strict partitions counted are (), (1), and (2,1).
Is there a simple generating function?

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  1  11  21   22    311    2211    331      2222      333
         111  1111  2111   111111  2221     4211      4221
                    11111          4111     221111    51111
                                   211111   311111    222111
                                   1111111  11111111  321111
                                                      21111111
                                                      111111111
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428), with strict case A340830.
The case where length also divides n is A326842 (A326847).
The Heinz numbers of these partitions are A340606.
The version for factorizations is A340851, with reciprocal version A340853.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length/max divides n (A316413/A326836).
A067539 counts partitions with integer geometric mean (A326623).
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A330950 = partitions of n whose Heinz number is divisible by n (A324851).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(Length[#]/#)&]],{n,0,30}]

A340611 Number of integer partitions of n of length 2^k where k is the greatest part.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 29, 32, 34, 36, 38, 41, 42, 45, 47, 50, 52, 56, 58, 63, 66, 71, 75, 83, 88, 98, 106, 118, 128, 143, 155, 173, 188, 208, 226, 250, 270, 297, 321, 350
Offset: 0

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Comments

Also the number of integer partitions of n with maximum 2^k where k is the length.

Examples

			The partitions for n = 12, 14, 16, 22, 24:
  32211111  32222111  32222221  33333322          33333333
  33111111  33221111  33222211  33333331          4222221111111111
            33311111  33322111  4222111111111111  4322211111111111
                      33331111  4321111111111111  4332111111111111
                                4411111111111111  4422111111111111
                                                  4431111111111111
The conjugate partitions:
  (8,2,2)  (8,3,3)  (8,4,4)  (8,7,7)     (8,8,8)
  (8,3,1)  (8,4,2)  (8,5,3)  (8,8,6)     (16,3,3,2)
           (8,5,1)  (8,6,2)  (16,2,2,2)  (16,4,2,2)
                    (8,7,1)  (16,3,2,1)  (16,4,3,1)
                             (16,4,1,1)  (16,5,2,1)
                                         (16,6,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length/max divides n (A316413/A326836).
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.
A340689 have a factorization of length 2^max.
A340690 have a factorization of maximum 2^length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]==2^Max@@#&]],{n,0,30}]

A340856 Squarefree numbers whose greatest prime index (A061395) is divisible by their number of prime factors (A001222).

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 47, 53, 57, 58, 59, 61, 65, 67, 71, 73, 74, 78, 79, 83, 86, 87, 89, 91, 95, 97, 101, 103, 106, 107, 109, 111, 113, 122, 127, 129, 130, 131, 133, 137, 138, 139, 142, 143, 145
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

Also Heinz numbers of strict integer partitions whose greatest part is divisible by their number of parts. These partitions are counted by A340828.

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}         31: {11}       71: {20}
      3: {2}         35: {3,4}      73: {21}
      5: {3}         37: {12}       74: {1,12}
      6: {1,2}       38: {1,8}      78: {1,2,6}
      7: {4}         39: {2,6}      79: {22}
     11: {5}         41: {13}       83: {23}
     13: {6}         43: {14}       86: {1,14}
     14: {1,4}       47: {15}       87: {2,10}
     17: {7}         53: {16}       89: {24}
     19: {8}         57: {2,8}      91: {4,6}
     21: {2,4}       58: {1,10}     95: {3,8}
     23: {9}         59: {17}       97: {25}
     26: {1,6}       61: {18}      101: {26}
     29: {10}        65: {3,6}     103: {27}
     30: {1,2,3}     67: {19}      106: {1,16}
		

Crossrefs

Note: Heinz number sequences are given in parentheses below.
The case of equality, and the reciprocal version, are both A002110.
The non-strict reciprocal version is A168659 (A340609).
The non-strict version is A168659 (A340610).
These are the Heinz numbers of partitions counted by A340828.
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up the prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413/A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).
A257541 gives the rank of the partition with Heinz number n.
A340830 counts strict partitions whose parts are multiples of the length.

Programs

  • Mathematica
    Select[Range[2,100],SquareFreeQ[#]&&Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]
Previous Showing 21-30 of 39 results. Next