cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A327077 Triangle read by rows where T(n,k) is the number of unlabeled simple connected graphs with n vertices and k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 0, 2, 0, 11, 4, 3, 0, 3, 0, 60, 25, 14, 7, 0, 6, 0, 502, 197, 91, 34, 18, 0, 11, 0, 7403, 2454, 826, 267, 100, 44, 0, 23, 0, 197442, 48201, 11383, 2800, 831, 259, 117, 0, 47, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Unlabeled connected graphs with no bridges are counted by A007146 (unlabeled graphs with spanning edge-connectivity >= 2).

Examples

			Triangle begins:
     1
     1    0
     0    1   0
     1    0   1   0
     3    1   0   2   0
    11    4   3   0   3  0
    60   25  14   7   0  6  0
   502  197  91  34  18  0 11  0
  7403 2454 826 267 100 44  0 23 0
  ...
		

Crossrefs

The labeled version is A327072.
Row sums are A001349.
Row sums without the k = 0 column are A052446.
Column k = 0 is A007146, if we assume A007146(0) = 1.
Column k = 1 is A327074.
Column k = n - 1 is A000055.

Extensions

a(21)-a(54) from Andrew Howroyd, Aug 28 2019

A327129 Number of connected set-systems covering n vertices with at least one edge whose removal (along with any non-covered vertices) disconnects the set-system (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 1, 2, 35, 2804
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			The a(3) = 35 set-systems:
  {123}  {1}{12}{23}   {1}{2}{12}{13}   {1}{2}{3}{12}{13}
         {1}{13}{23}   {1}{2}{12}{23}   {1}{2}{3}{12}{23}
         {1}{2}{123}   {1}{2}{13}{23}   {1}{2}{3}{13}{23}
         {1}{3}{123}   {1}{2}{3}{123}   {1}{2}{3}{12}{123}
         {2}{12}{13}   {1}{3}{12}{13}   {1}{2}{3}{13}{123}
         {2}{13}{23}   {1}{3}{12}{23}   {1}{2}{3}{23}{123}
         {2}{3}{123}   {1}{3}{13}{23}
         {3}{12}{13}   {2}{3}{12}{13}
         {3}{12}{23}   {2}{3}{12}{23}
         {1}{23}{123}  {2}{3}{13}{23}
         {2}{13}{123}  {1}{2}{13}{123}
         {3}{12}{123}  {1}{2}{23}{123}
                       {1}{3}{12}{123}
                       {1}{3}{23}{123}
                       {2}{3}{12}{123}
                       {2}{3}{13}{123}
		

Crossrefs

The restriction to simple graphs is A327079, with non-covering version A327231.
The version for spanning edge-connectivity is A327145, with BII-numbers A327111.
The BII-numbers of these set-systems are A327099.
The non-covering version is A327196.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,3}]

Formula

Inverse binomial transform of A327196.

A327073 Number of labeled simple connected graphs with n vertices and exactly one bridge.

Original entry on oeis.org

0, 0, 1, 0, 12, 200, 7680, 506856, 58934848, 12205506096, 4595039095680, 3210660115278000, 4240401342141499392, 10743530775519296581944, 52808688280248604235191296, 507730995579614277599205009240, 9603347831901155679455061048606720, 358743609478638769812094362544644831968
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).

Crossrefs

Column k = 1 of A327072.
The unlabeled version is A327074.
Connected graphs with no bridges are A007146.
Connected graphs whose bridges are all leaves are A322395.
Connected graphs with at least one bridge are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==1&]],{n,0,5}]
  • PARI
    \\ See A095983.
    seq(n)={my(p=x*deriv(log(sum(k=0, n-1, 2^binomial(k, 2) * x^k / k!) + O(x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))^2/2), -(n+1)) } \\ Andrew Howroyd, Dec 28 2020

Formula

E.g.f.: (x + Sum_{k>=2} A095983(k)*x^k/(k-1)!)^2/2. - Andrew Howroyd, Aug 25 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 25 2019

A327231 Number of labeled simple connected graphs covering a subset of {1..n} with at least one non-endpoint bridge (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 0, 1, 3, 18, 250, 5475, 191541, 11065572, 1104254964, 201167132805, 69828691941415, 47150542741904118, 62354150876493659118, 161919876753750972738791, 827272271567137357352991705, 8331016130913639432634637862600, 165634930763383717802534343776893928
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A bridge is an edge whose removal disconnected the graph, while an endpoint is a vertex belonging to only one edge. The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Examples

			The a(2) = 1 through a(4) = 18 edge-sets:
  {12}  {12}  {12}
        {13}  {13}
        {23}  {14}
              {23}
              {24}
              {34}
              {12,13,24}
              {12,13,34}
              {12,14,23}
              {12,14,34}
              {12,23,34}
              {12,24,34}
              {13,14,23}
              {13,14,24}
              {13,23,24}
              {13,24,34}
              {14,23,24}
              {14,23,34}
		

Crossrefs

Column k = 1 of A327148.
The covering version is A327079.
Connected bridged graphs (spanning edge-connectivity 1) are A327071.
BII-numbers of set-systems with non-spanning edge-connectivity 1 are A327099.
Covering set-systems with non-spanning edge-connectivity 1 are A327129.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==1&]],{n,0,4}]

Formula

Binomial transform of A327079.

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 11 2019

A327352 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 4, 1, 14, 4, 1, 83, 59, 23, 2, 1232, 2551, 2792, 887, 107, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Triangle begins:
     1
     1    1
     4    1
    14    4    1
    83   59   23    2
  1232 2551 2792  887  107   10    1
Row n = 3 counts the following antichains:
  {}             {{1,2,3}}      {{1,2},{1,3},{2,3}}
  {{1}}          {{1,2},{1,3}}
  {{2}}          {{1,2},{2,3}}
  {{3}}          {{1,3},{2,3}}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1},{2}}
  {{1},{3}}
  {{2},{3}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A014466.
Column k = 0 is A327355.
The unlabeled version is A327438.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}

A327355 Number of antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).

Original entry on oeis.org

1, 1, 4, 14, 83, 1232, 84625, 109147467, 38634257989625
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			The a(1) = 1 through a(3) = 14 antichains:
  {}  {}         {}
      {{1}}      {{1}}
      {{2}}      {{2}}
      {{1},{2}}  {{3}}
                 {{1,2}}
                 {{1,3}}
                 {{2,3}}
                 {{1},{2}}
                 {{1},{3}}
                 {{2},{3}}
                 {{1},{2,3}}
                 {{2},{1,3}}
                 {{3},{1,2}}
                 {{1},{2},{3}}
		

Crossrefs

Column k = 0 of A327352.
The covering case is A120338.
The unlabeled version is A327437.
The non-spanning edge-connectivity version is A327354.

Formula

a(n) = A120338(n) + A014466(n) - A006126(n).

A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.

Examples

			Triangle begins:
    1
    1   0
    0   1   0
    1   0   3   0
   10  12   0  16   0
  253 200 150   0 125   0
		

Crossrefs

Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
Column k = 1 is A327073.
Column k = n - 1 is A000272.
Row sums are A001187.
The unlabeled version is A327077.
Row sums without the first column are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
  • PARI
    \\ p is e.g.f. of A053549.
    T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020

A327353 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			Triangle begins:
    1
    1    1
    2    3
    8    7    3    1
   53   27   45   36    6
  747  511 1497 2085 1540  693  316  135   45   10    1
Row n = 3 counts the following antichains:
  {}             {{1}}      {{1,2},{1,3}}  {{1,2},{1,3},{2,3}}
  {{1},{2}}      {{2}}      {{1,2},{2,3}}
  {{1},{3}}      {{3}}      {{1,3},{2,3}}
  {{2},{3}}      {{1,2}}
  {{1},{2,3}}    {{1,3}}
  {{2},{1,3}}    {{2,3}}
  {{3},{1,2}}    {{1,2,3}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A014466.
Column k = 0 is A327354.
The covering case is A327357.
The version for spanning edge-connectivity is A327352.
The specialization to simple graphs is A327148, with covering case A327149, unlabeled version A327236, and unlabeled covering case A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}

A327354 Number of disconnected or empty antichains of nonempty subsets of {1..n} (non-spanning edge-connectivity 0).

Original entry on oeis.org

1, 1, 2, 8, 53, 747, 45156, 54804920, 19317457655317
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			The a(1) = 1 through a(3) = 8 antichains:
  {}  {}         {}
      {{1},{2}}  {{1},{2}}
                 {{1},{3}}
                 {{2},{3}}
                 {{1},{2,3}}
                 {{2},{1,3}}
                 {{3},{1,2}}
                 {{1},{2},{3}}
		

Crossrefs

Column k = 0 of A327353.
The covering case is A120338.
The unlabeled version is A327426.
The spanning edge-connectivity version is A327352.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Length[csm[#]]!=1&]],{n,0,4}]

Formula

Equals the binomial transform of the exponential transform of A048143 minus A048143.

A327100 BII-numbers of antichains of sets with cut-connectivity 1.

Original entry on oeis.org

1, 2, 8, 20, 36, 48, 128, 260, 272, 276, 292, 304, 308, 320, 516, 532, 544, 548, 560, 564, 576, 768, 784, 788, 800, 804, 1040, 1056, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304, 2308, 2324, 2336, 2352, 2560, 2564, 2576, 2596, 2608, 2816, 2820, 2832, 2848
Offset: 1

Views

Author

Gus Wiseman, Aug 22 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the cut-connectivity of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039, A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The sequence of all antichains of sets with vertex-connectivity 1 together with their BII-numbers begins:
    1: {{1}}
    2: {{2}}
    8: {{3}}
   20: {{1,2},{1,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
  128: {{4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  292: {{1,2},{2,3},{1,4}}
  304: {{1,3},{2,3},{1,4}}
  308: {{1,2},{1,3},{2,3},{1,4}}
  320: {{1,2,3},{1,4}}
  516: {{1,2},{2,4}}
  532: {{1,2},{1,3},{2,4}}
  544: {{2,3},{2,4}}
  548: {{1,2},{2,3},{2,4}}
  560: {{1,3},{2,3},{2,4}}
  564: {{1,2},{1,3},{2,3},{2,4}}
		

Crossrefs

Positions of 1's in A326786.
The graphical case is A327114.
BII numbers of antichains with vertex-connectivity >= 1 are A326750.
BII-numbers for cut-connectivity 2 are A327082.
BII-numbers for cut-connectivity 1 are A327098.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Select[Range[0,100],stableQ[bpe/@bpe[#],SubsetQ]&&cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]

Formula

If (+) is union and (-) is complement, we have A327100 = A058891 + (A326750 - A326751).
Previous Showing 11-20 of 26 results. Next