cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A014253 a(n) = b(n)^2, where b(n) = b(n-1)^2 + b(n-2)^2 (A000283).

Original entry on oeis.org

0, 1, 1, 4, 25, 841, 749956, 563696135209, 317754178344723197077225, 100967717855888389973004528722798800700252204356
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [0] cat [n le 2 select 1 else (Self(n-1)+Self(n-2))^2: n in [1..10]]; // Vincenzo Librandi, Apr 02 2015
    
  • Mathematica
    RecurrenceTable[{a[n]==(a[n-1]+a[n-2])^2, a[0]==0, a[1]==1}, a, {n,0,10}] (* G. C. Greubel, Jun 18 2019 *)
  • PARI
    m=10; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=(v[n-1] + v[n-2])^2); v \\ G. C. Greubel, Jun 18 2019
    
  • Sage
    def a(n):
        if (n==0): return 0
        elif (n==1): return 1
        else: return (a(n-1) + a(n-2))^2
    [a(n) for n in (0..10)] # G. C. Greubel, Jun 18 2019

Formula

a(n+2) = (a(n+1) + a(n))^2. - Benoit Cloitre, Dec 29 2001

A000278 a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 16, 65, 321, 4546, 107587, 20773703, 11595736272, 431558332068481, 134461531248108526465, 186242594112190847520182173826, 18079903385772308300945867582153787570051, 34686303861638264961101080464895364211215702792496667048327
Offset: 0

Views

Author

Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else Self(n-1) + Self(n-2)^2: n in [1..18]]; // Vincenzo Librandi, Dec 17 2015
  • Maple
    A000278 := proc(n) option remember; if n <= 1 then n else A000278(n-2)^2+A000278(n-1); fi; end;
  • Mathematica
    Join[{a=0,b=1},Table[c=a^2+b;a=b;b=c,{n,16}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *)
    RecurrenceTable[{a[n +2] == a[n +1] + a[n]^2, a[0] == 1, a[1] == 1}, a, {n, 0, 16}] (* Robert G. Wilson v, Apr 14 2017 *)
  • PARI
    a(n)=if(n<2,n>0,a(n-1)+a(n-2)^2)
    
  • Sage
    def A000278():
        x, y = 0, 1
        while True:
            yield x
            x, y = x + y, x * x
    a = A000278(); [next(a) for i in range(18)]  # Peter Luschny, Dec 17 2015
    

Formula

a(2n) is asymptotic to A^(sqrt(2)^(2n-1)) where A=1.668751581493687393311628852632911281060730869124873165099170786836201970866312366402366761987... and a(2n+1) to B^(sqrt(2)^(2n)) where B=1.693060557587684004961387955790151505861127759176717820241560622552858106116817244440438308887... See reference for proof. - Benoit Cloitre, May 03 2003

Extensions

Name edited by Petros Hadjicostas, Nov 03 2019

A076725 a(n) = a(n-1)^2 + a(n-2)^4, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 41, 2306, 8143397, 94592167328105, 13345346031444632841427643906, 258159204435047592104207508169153297050209383336364487461
Offset: 0

Views

Author

Michael Somos, Oct 29 2002

Keywords

Comments

a(n) and a(n+1) are relatively prime for n >= 0.
The number of independent sets on a complete binary tree with 2^(n-1)-1 nodes. - Jonathan S. Braunhut (jonbraunhut(AT)usa.net), May 04 2004. For example, when n=3, the complete binary tree with 2 levels has 2^2-1 nodes and has 5 independent sets so a(3)=5. The recursion for number of independent sets splits in two cases, with or without the root node being in the set.
a(10) has 113 digits and is too large to include.

Examples

			a(2) = a(1)^2 + a(0)^4 = 1^2 + 1^4 = 2.
a(3) = a(2)^2 + a(1)^4 = 2^2 + 1^4 = 5.
a(4) = a(3)^2 + a(2)^4 = 5^2 + 2^4 = 41.
a(5) = a(4)^2 + a(3)^4 = 41^2 + 5^4 = 2306.
a(6) = a(5)^2 + a(4)^4 = 2306^2 + 41^4 = 8143397.
a(7) = a(6)^2 + a(5)^4 = 8143397^2 + 2306^4 = 94592167328105.
		

Crossrefs

Programs

  • Maple
    A[0]:= 1: A[1]:= 1:
    for n from 2 to 10 do
      A[n]:= A[n-1]^2 + A[n-2]^4;
    od:
    seq(A[i],i=0..10); # Robert Israel, Aug 21 2017
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]^2 + a[n-2]^4, a[0] ==1, a[1] == 1}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
    NestList[{#[[2]],#[[1]]^4+#[[2]]^2}&,{1,1},10][[All,1]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    {a(n) = if( n<2, 1, a(n-1)^2 + a(n-2)^4)}
    
  • PARI
    {a=[0,0];for(n=1,99,iferr(a=[a[2],log(exp(a*[4,0;0,2])*[1,1]~)],E,return([n,exp(a[2]/2^n)])))} \\ To compute an approximation of the constant c1 = exp(lim_{n->oo} (log a(n))/2^n). \\ M. F. Hasler, May 21 2017
    
  • PARI
    a=vector(20); a[1]=1;a[2]=2; for(n=3, #a, a[n]=a[n-1]^2+a[n-2]^4); concat(1, a) \\ Altug Alkan, Apr 04 2018

Formula

If b(n) = 1 + 1/b(n-1)^2, b(1)=1, then b(n) = a(n)/a(n-1)^2.
Lim_{n->inf} a(n)/a(n-1)^2 = A092526 (constant).
a(n) is asymptotic to c1^(2^n) * c2.
c1 = 1.2897512927198122075..., c2 = 1/A092526 = A263719 = (1/6)*(108 + 12*sqrt(93))^(1/3) - 2/(108 + 12*sqrt(93))^(1/3) = 0.682327803828019327369483739711... is the root of the equation c2*(1 + c2^2) = 1. - Vaclav Kotesovec, Dec 18 2014

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007

A112969 a(n) = a(n-1)^4 + a(n-2)^4 for n >= 2 with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 17, 83537, 48698490414981559682, 5624216052381164150697569400035392464306474190030694298257552124199835791859537
Offset: 0

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Comments

A quartic Fibonacci sequence.
This is the quartic (or biquadratic) analog of the Fibonacci sequence similarly to A000283 being the quadratic analog of the Fibonacci sequence. The primes in this sequence begin a(3), a(4), a(5).

Examples

			a(3) = 1^4 + 1^4 = 2.
a(4) = 1^4 + 2^4 = 17.
a(5) = 2^4 + 17^4 = 83537.
a(6) = 17^4 + 83537^4 = 48698490414981559682.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1] ==1, a[2] == 1, a[n] == a[n-1]^4 + a[n-2]^4}, a, {n, 1, 8}] (* Vaclav Kotesovec, Dec 18 2014 *)

Formula

a(n) ~ c^(4^n), where c = 1.0111288972169538887655499395580320278253918666919181401824606983217263409... . - Vaclav Kotesovec, Dec 18 2014

Extensions

Name edited by Petros Hadjicostas, Nov 03 2019
a(0)=0 prepended by Alois P. Heinz, Sep 15 2023

A112961 a(n) = a(n-1)^3 + a(n-2)^3 for n >= 2 with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 9, 737, 400316282, 64151935432803278787493321, 264015418305763603932856608512044494366944180663171458205345412119783805892929
Offset: 0

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Comments

A cubic Fibonacci sequence.
This is the cubic analog of the Fibonacci sequence analogously to A000283 being the quadratic analog of the Fibonacci sequence.

Examples

			a(3) = 1^3 + 1^3 = 2.
a(4) = 1^3 + 2^3 = 9.
a(5) = 2^3 + 9^3 = 737.
a(6) = 9^3 + 737^3 = 400316282.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n<2, n, a(n-1)^3+a(n-2)^3) end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Sep 02 2023
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==1,a[n]==a[n-1]^3+a[n-2]^3},a,{n,10}] (* Harvey P. Dale, Aug 24 2014 *)

Formula

a(n) ~ b^3^n with b = 1.0275436477.... [Charles R Greathouse IV, Dec 28 2011]

Extensions

Name edited by Petros Hadjicostas, Nov 03 2019
a(0)=0 prepended by Alois P. Heinz, Sep 02 2023

A112957 a(1) = a(2) = a(3) = 1; for n > 1, a(n+3) = a(n)^2 + a(n+1)^2 + a(n+2)^2.

Original entry on oeis.org

1, 1, 1, 3, 11, 131, 17291, 298995963, 89398586189293211, 7992107212644486930829797919966571, 63873777698404030240264509605345282496735163325301838600463378485931
Offset: 1

Views

Author

Jonathan Vos Post, Jan 02 2006; definition corrected Jan 02 2006

Keywords

Comments

A quadratic tribonacci sequence.
This is to A000283 as a tribonacci (A000213) is to Fibonacci. Two oddities about this sequence: (a) its first 7 terms are identical to terms numbered 2 through 8 of A072878; (b) only one of the first 9 terms are composite. Primes in the sequence begin 3, 11, 131, 17291 and 89398586189293211. What is the next prime?

Crossrefs

Programs

A112958 a(1) = a(2) = a(3) = a(4) = 1; for n>1: a(n+4) = a(n)^2 + a(n+1)^2 + a(n+2)^2 + a(n+3)^2.

Original entry on oeis.org

1, 1, 1, 1, 4, 19, 379, 144019, 20741616379, 430214650034342688004, 185084645104171955001009752069374428191659
Offset: 1

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Comments

A quadratic tetranacci sequence.
This is to A000283 as a tetranacci (A000288) is to Fibonacci. Primes in this begin 19, 379.

Examples

			1^2 + 4^2 + 19^2 + 379^2 = 144019.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == 1, a[n] == a[n-1]^2 + a[n-2]^2 + a[n-3]^2 + a[n-4]^2}, a, {n, 15}] (* Vincenzo Librandi, Aug 21 2016 *)

A112959 a(1) = a(2) = a(3) = a(4) = a(5) = 1; for n>1: a(n+5) = (a(n))^2 + (a(n+1))^2 + (a(n+2))^2 + (a(n+3))^2 + (a(n+4))^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 29, 869, 756029, 571580604869, 326704387862983487112029, 106735757048926752040856495274871386126283608845
Offset: 1

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Comments

A quadratic pentanacci sequence.
This is to A000283 as a pentanacci (A000322) is to Fibonacci. Primes in this begin a(6) = 5 and a(7) = 29. a(8), a(9), a(10) and a(11) are semiprime.

Examples

			5^2 + 29^2 + 869^2 + 756029^2 + 571580604869^2 = 326704387862983487112029.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == a[5] == 1, a[n] == a[n-1]^2 + a[n-2]^2 + a[n-3]^2 + a[n-4]^2 + a[n-5]^2}, a, {n, 16}] (* Vincenzo Librandi, Aug 21 2016 *)

A112960 a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1; for n>1: a(n+6) = (a(n))^2 + (a(n+1))^2 + (a(n+2))^2 + (a(n+3))^2 + (a(n+4))^2 + (a(n+5))^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 41, 1721, 2963561, 8782696764281, 77135762453320729974211241, 5949925849255124079413733148488788342637650064971321
Offset: 1

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Comments

A quadratic hexanacci sequence.
This is to A000283 as a hexanacci (A000383) is to Fibonacci. Primes in this begin a(8) = 41, a(9) = 1721. Semiprimes begin a(7), a(10), a(12).

Examples

			1^2 + 6^2 + 41^2 + 1721^2 + 2963561^2 + 8782696764281^2 = 77135762453320729974211241.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1, a[n] == a[n-1]^2 + a[n-2]^2 + a[n-3]^2 + a[n-4]^2 + a[n-5]^2 + a[n-6]^2}, a, {n, 17}] (* Vincenzo Librandi, Aug 21 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,a^2+b^2+c^2+d^2+e^2+f^2}; NestList[ nxt,{1,1,1,1,1,1},12][[All,1]] (* Harvey P. Dale, Apr 12 2020 *)

A063827 a(n) = round(sqrt(a(n-2)^2 + a(n-1)^2)) with a(0) = 1 and a(1) = 2.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 33, 42, 53, 68, 86, 110, 140, 178, 226, 288, 366, 466, 593, 754, 959, 1220, 1552, 1974, 2511, 3194, 4063, 5168, 6574, 8362, 10637, 13530, 17211, 21892, 27847, 35422, 45057, 57314, 72904, 92736, 117962, 150050
Offset: 0

Views

Author

Henry Bottomley, Aug 20 2001

Keywords

Comments

a(n)/a(n-1) tends towards 1.27201964951... = sqrt((1+sqrt(5))/2). See A139339.

Examples

			a(7) = 8 since round(sqrt(5^2 + 6^2)) = round(sqrt(61)) = round(7.8102...) = 8.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Round[Sqrt[a^2+b^2]]}; NestList[nxt,{1,2},50][[;;,1]] (* Harvey P. Dale, Dec 18 2024 *)
  • PARI
    { default(realprecision, 50); for (n=0, 500, if (n>1, a=round(sqrt(a2^2 + a1^2)); a2=a1; a1=a, if (n, a=a1=2, a=a2=1)); write("b063827.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 01 2009

Extensions

Missing parenthesis added to definition by Harry J. Smith, Sep 01 2009
Showing 1-10 of 26 results. Next