A000325 a(n) = 2^n - n.
1, 1, 2, 5, 12, 27, 58, 121, 248, 503, 1014, 2037, 4084, 8179, 16370, 32753, 65520, 131055, 262126, 524269, 1048556, 2097131, 4194282, 8388585, 16777192, 33554407, 67108838, 134217701, 268435428, 536870883, 1073741794, 2147483617
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 27*x^5 + 58*x^6 + 121*x^7 + ...
References
- Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Kassie Archer and Aaron Geary, Descents in powers of permutations, arXiv:2406.09369 [math.CO], 2024.
- Cory B. H. Ball, The Apprentices' Tower of Hanoi, Electronic Theses and Dissertations, East Tennessee State University, Paper 2512, 2015.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178;
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- David Callan, Pattern avoidance in circular permutations, arXiv:math/0210014 [math.CO], 2002.
- Charles Cratty, Samuel Erickson, Frehiwet Negass, and Lara Pudwell, Pattern Avoidance in Double Lists, preprint, 2015.
- Robert DeSario and LeRoy Wenstrom, Invertible shuffles, Problem 10931, Amer. Math. Monthly, 111 (No. 2, 2004), 169-170.
- Askar Dzhumadil'daev and Pasha Zusmanovich, The alternative operad is not Koszul, arXiv:0906.1272 [math.RA], 2009-2013.
- Marty Getz, Dixon Jones and Ken Dutch, Partitioning by Arithmetic Progressions: Problem 11005, American Math. Monthly, Vol. 112, 2005, p. 89. (The published solution is incomplete. Letting d be the common difference of the arithmetic progressions, the solver's expression q_1(n,d)=2^(n-d) must be summed over all d=1,...,n and duplicate partitions must be removed.)
- E. Getzler, The semi-classical approximation for modular operads, arXiv:alg-geom/9612005, 1996.
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, arXiv:2112.03338 [math.CO], 2021.
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018.
- The IMO Compendium, Problem 4, 15th Canadian Mathematical Olympiad 1983.
- R. Kehinde, S. O. Makanjuola and A. Umar, On the semigroup of order-decreasing partial isometries of a finite chain, arXiv:1101.2558 [math.GR], 2011.
- Alain Lascoux and Marcel-Paul Schützenberger, Schubert polynomials and the Littlewood Richardson rule, Letters in Math. Physics 10 (1985) 111-124.
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Eric Weisstein's World of Mathematics, Chromatic Invariant
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Moebius Ladder
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Haskell
a000325 n = 2 ^ n - n a000325_list = zipWith (-) a000079_list [0..] -- Reinhard Zumkeller, Jul 17 2012
-
Magma
[2^n - n: n in [0..35]]; // Vincenzo Librandi, May 13 2011
-
Maple
A000325 := proc(n) option remember; if n <=1 then n+1 else 2*A000325(n-1)+n-1; fi; end; g:=1/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-n, n=0..31); # Zerinvary Lajos, Jan 09 2009
-
Mathematica
Table[2^n - n, {n, 0, 39}] (* Alonso del Arte, Sep 15 2014 *) LinearRecurrence[{4, -5, 2}, {1, 2, 5}, {0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
-
PARI
{a(n) = 2^n - n}; /* Michael Somos, Nov 04 2006 */
-
Python
def A000325(n): return (1<
Chai Wah Wu, Jan 11 2023
Formula
a(n+1) = 2*a(n) + n - 1, a(0) = 1. - Reinhard Zumkeller, Apr 12 2003
Binomial transform of 1, 0, 1, 1, 1, .... The sequence starting 1, 2, 5, ... has a(n) = 1 + n + 2*Sum_{k=2..n} binomial(n, k) = 2^(n+1) - n - 1. This is the binomial transform of 1, 1, 2, 2, 2, 2, .... a(n) = 1 + Sum_{k=2..n} C(n, k). - Paul Barry, Jun 06 2003
G.f.: (1-3x+3x^2)/((1-2x)*(1-x)^2). - Emeric Deutsch, Feb 22 2004
a(n+1) = sum of n-th row of the triangle in A109128. - Reinhard Zumkeller, Jun 20 2005
Row sums of triangle A133116. - Gary W. Adamson, Sep 14 2007
G.f.: 1 / (1 - x / (1 - x / ( 1 - x / (1 + x / (1 - 2*x))))). - Michael Somos, May 12 2012
a(n) = [x^n](B(x)^n-B(x)^(n-1)), n>0, a(0)=1, where B(x) = (1+2*x+sqrt(1+4*x^2))/2. - Vladimir Kruchinin, Mar 07 2014
E.g.f.: (exp(x) - x)*exp(x). - Ilya Gutkovskiy, Aug 07 2016
a(n)^2 - 4*a(n-1)^2 = (n-2)*(a(n)+2*a(n-1)). - Yuchun Ji, Jul 13 2018
a(2^n) = (2^a(n) - 1)*2^n. - Lorenzo Sauras Altuzarra, Feb 01 2022
Comments