A000668 Mersenne primes (primes of the form 2^n - 1).
3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
Offset: 1
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 135-136.
- Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 76.
- Marcus P. F. du Sautoy, The Number Mysteries, A Mathematical Odyssey Through Everyday Life, Palgrave Macmillan, First published in 2010 by the Fourth Estate, an imprint of Harper Collins UK, 2011, p. 46. - Robert G. Wilson v, Nov 26 2013
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Bryant Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..18
- Peter Alfeld, The 39th Mersenne prime, 2003.
- Yan Bingze, Li Qiong, Mao Haokun, and Chen Nan, An efficient hybrid hash based privacy amplification algorithm for quantum key distribution, arXiv:2105.13678 [quant-ph], 2021.
- Andrew R. Booker, The Nth Prime Page
- John Rafael M. Antalan, A Recreational Application of Two Integer Sequences and the Generalized Repetitious Number Puzzle, arXiv:1908.06014 [math.HO], 2019-2020.
- W. W. Rouse Ball, Mathematical recreations and problems of past and present times, London, Macmillan and Co., 1892, pp. 24-25.
- W. W. Rouse Ball, Mersenne's numbers, Messenger of Mathematics, Vol. 21 (1892), pp. 34-40, 121.
- W. W. Rouse Ball, Mersenne's numbers, Nature, Vol. 89 (1912), p. 86.
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
- Douglas Butler, Mersenne Primes.
- C. K. Caldwell, Mersenne primes.
- C. K. Caldwell, "Top Twenty" page, Mersenne Primes.
- Luis H. Gallardo and Olivier Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
- Richard K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025. See p. 12.
- Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv preprint arXiv:1203.2083 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 15 2012
- Abílio Lemos and Ady Cambraia Junior, On the number of prime factors of Mersenne numbers, arXiv:1606.08690 [math.NT] (2016).
- Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola (2018) Vol. 54, Issue 3.
- Math Reference Project, Mersenne and Fermat Primes.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From _N. J. A. Sloane_, Jun 13 2012
- Romeo Meštrović, Goldbach-type conjectures arising from some arithmetic progressions, University of Montenegro, 2018.
- Romeo Meštrović, Goldbach's like conjectures arising from arithmetic progressions whose first two terms are primes, arXiv:1901.07882 [math.NT], 2019.
- Landon Curt Noll, Mersenne Prime Digits and Names.
- Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Primefan, The Mersenne Primes.
- Christian Salas, Cantor Primes as Prime-Valued Cyclotomic Polynomials, arXiv preprint arXiv:1203.3969 [math.NT], 2012.
- Harry J. Smith, Mersenne Primes, 1981-2010.
- Gordon Spence, 36th Mersenne Prime Found, 1999.
- Susan Stepney, Mersenne Prime.
- Thesaurus.maths.org, Mersenne Prime.
- Bryant Tuckerman, The 24th Mersenne prime, Proc. Nat. Acad. Sci. USA, Vol. 68 (1971), pp. 2319-2320.
- Samuel S. Wagstaff, Jr., The Cunningham Project.
- Yunlan Wei, Yanpeng Zheng, Zhaolin Jiang and Sugoog Shon, A Study of Determinants and Inverses for Periodic Tridiagonal Toeplitz Matrices with Perturbed Corners Involving Mersenne Numbers, Mathematics, Vol. 7, No. 10 (2019), 893.
- Eric Weisstein's World of Mathematics, Mersenne Prime.
- Eric Weisstein's World of Mathematics, Perfect Number.
- Wikipedia, Mersenne prime.
- Marek Wolf, Computer experiments with Mersenne primes, arXiv preprint arXiv:1112.2412 [math.NT], 2011.
- Chai Wah Wu, Can machine learning identify interesting mathematics? An exploration using empirically observed laws, arXiv:1805.07431 [cs.LG], 2018.
Crossrefs
Programs
-
GAP
A000668:=Filtered(List(Filtered([1..600], IsPrime),i->2^i-1),IsPrime); # Muniru A Asiru, Oct 01 2017
-
Maple
A000668 := proc(n) local i; i := 2^(ithprime(n))-1: if (isprime(i)) then return i fi: end: seq(A000668(n), n=1..31); # Jani Melik, Feb 09 2011 # Alternate: seq(numtheory:-mersenne([i]),i=1..26); # Robert Israel, Jul 13 2014
-
Mathematica
2^Array[MersennePrimeExponent, 18] - 1 (* Jean-François Alcover, Feb 17 2018, Mersenne primes with less than 1000 digits *) 2^MersennePrimeExponent[Range[18]] - 1 (* Eric W. Weisstein, Sep 04 2021 *)
-
PARI
forprime(p=2,1e5,if(ispseudoprime(2^p-1),print1(2^p-1", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
PARI
LL(e) = my(n, h); n = 2^e-1; h = Mod(2, n); for (k=1, e-2, h=2*h*h-1); return(0==h) \\ after Joerg Arndt in A000043 forprime(p=1, , if(LL(p), print1(p, ", "))) \\ Felix Fröhlich, Feb 17 2018
-
Python
from sympy import isprime, primerange print([2**n-1 for n in primerange(1, 1001) if isprime(2**n-1)]) # Karl V. Keller, Jr., Jul 16 2020
Formula
a(n) = sigma(A019279(n)) = A000203(A019279(n)), provided that there are no odd superperfect numbers. - Omar E. Pol, May 10 2008
a(n) = A007947(A000396(n))/2, provided that there are no odd perfect numbers. - Omar E. Pol, Feb 01 2013
a(n) = 4*A134709(n) + 3. - Ivan N. Ianakiev, Sep 07 2013
a(n) = A003056(A000396(n)), provided that there are no odd perfect numbers. - Omar E. Pol, Dec 19 2016
Sum_{n>=1} 1/a(n) = A173898. - Amiram Eldar, Feb 20 2021
Comments