cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A046682 Number of cycle types of conjugacy classes of all even permutations of n elements.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 40, 52, 69, 90, 118, 151, 195, 248, 317, 400, 505, 632, 793, 985, 1224, 1512, 1867, 2291, 2811, 3431, 4186, 5084, 6168, 7456, 9005, 10836, 13026, 15613, 18692, 22316, 26613, 31659, 37619, 44601, 52815, 62416, 73680, 86809, 102162
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n with even number of even parts. There is no restriction on the odd parts.
a(n) = u(n) + v(n), n >= 2, of the Osima reference, p. 383.
Also number of partitions of n with largest part congruent to n modulo 2: a(2*n) = A027187(2*n), a(2*n-1) = A027193(2*n-1); a(n) = A000041(n) - A000701(n). - Reinhard Zumkeller, Apr 22 2006
Equivalently, number of partitions of n with number of parts having the same parity as n. - Olivier Gérard, Apr 04 2012
Also number of distinct free Young diagrams (Ferrers graphs with n nodes). Free Young diagrams are distinct when none is a rigid transformation (translation, rotation, reflection or glide reflection) of another. - Jani Melik, May 08 2016
Let the cycle type of an even permutation be represented by the partition A=(O1,O2,...,Oi,E1,E2,...,E2j), where the Os are parts with odd length and the Es are parts with even lengths, and where j may be zero, using Reinhard Zumkeller's observation that the partition associated with a cycle type of an even permutation has an even number of even parts. The set of even cycle types enumerated here can be considered a monoid under a binary operation *: Let A be as above and B=(o1,o2,...,ok,e1,e2,...,e2m). A*B is the partition (O1o1,O1o2,...,O1ok,O1e1,...,O1e2m,O2o1,...,O2e2m,...,Oio1,...,Oie2m,E1o1,...,E1e2m,...,E2je2m). This product has 2im+2jk+4jm even parts, so it represents the cycle type of an even permutation. - Richard Locke Peterson, Aug 20 2018
From Gus Wiseman, Mar 31 2022: (Start)
Also the number of integer partitions of n with Heinz number greater than or equal to that of their conjugate, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are ranked by A352488. The complement is counted by A000701. For example, the a(n) partitions for n = 1...7 are:
(1) (11) (21) (22) (221) (222) (331)
(111) (211) (311) (321) (2221)
(1111) (2111) (2211) (3211)
(11111) (3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
Also the number of integer partitions of n with Heinz number less than or equal to their conjugate, ranked by A352489. For example, the a(n) partitions for n = 1...7 are:
(1) (2) (3) (4) (5) (6) (7)
(21) (22) (32) (33) (43)
(31) (41) (42) (52)
(311) (51) (61)
(321) (322)
(411) (421)
(511)
(4111)
(End)

Examples

			1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + ...
a(3)=2 since cycle types of even permutations of 3 elements is (.)(.)(.), (...).
a(4)=3 since cycle types of even permutations of 4 elements is (.)(.)(.)(.), (...)(.), (..)(..).
a(5)=4 (free Young diagrams):
  XXXXX XXXX. XXX.. XXX..
  ..... X.... XX... X....
  ..... ..... ..... X....
  ..... ..... ..... .....
  ..... ..... ..... .....
		

Crossrefs

For the number of conjugacy classes of the alternating group A_n, n>=2, see A000702.
Cf. A118301.
A000041 counts integer partitions.
A000700 counts self-conjugate partitions, ranked by A088902.
A330644 counts non-self-conjugate partitions, ranked by A352486.
Heinz number (rank) and partition:
- A122111 = rank of conjugate.
- A296150 = parts of partition, conjugate A321649.
- A352487 = rank less than conjugate, counted by A000701.
- A352488 = rank greater than or equal to conjugate, counted by A046682.
- A352489 = rank less than or equal to conjugate, counted by A046682.
- A352490 = rank greater than conjugate, counted by A000701.
- A352491 = rank minus conjugate.

Programs

  • Maple
    seq(add((-1)^(n-k)*combinat:-numbpart(n,k),k=0..n),n=0..48); # Peter Luschny, Aug 03 2015
  • Mathematica
    max = 48; f[q_] := Sum[(-q^2)^n^2, {n, 0, max}]/Product[1-q^n, {n, 1, max}]; CoefficientList[ Series[f[q], {q, 0, max}], q] (* Jean-François Alcover, Oct 18 2011, after g.f. *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>=Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
  • PARI
    list(lim)=my(q='q);Vec(sum(n=0,sqrt(lim),(-q^2)^(n^2))/prod(n=1,lim,1-q^n)+O(q^(lim\1+1))) \\ Charles R Greathouse IV, Oct 18 2011
    
  • PARI
    {a(n) = if( n<0, 0, (numbpart(n) + polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n)) / 2)} /* Michael Somos, Jul 24 2012 */

Formula

G.f.: Sum_{n>=0} (-q^2)^(n^2) / Product_{m>=1} (1-q^m ) = ( 1/Product_{m>=1} (1-q^m) + Product_{m>=1} (1+q^(2*m-1) ) ) / 2. - Mamuka Jibladze, Sep 07 2003
a(n) = (A000041(n) + A000700(n)) / 2.
a(n) = A000041(n) - A000701(n). - Gus Wiseman, Mar 31 2022

A124678 Number of conjugacy classes in PSL_2(p), p = prime(n).

Original entry on oeis.org

3, 4, 5, 6, 8, 9, 11, 12, 14, 17, 18, 21, 23, 24, 26, 29, 32, 33, 36, 38, 39, 42, 44, 47, 51, 53, 54, 56, 57, 59, 66, 68, 71, 72, 77, 78, 81, 84, 86, 89, 92, 93, 98, 99, 101, 102, 108, 114, 116, 117, 119, 122, 123, 128, 131, 134, 137, 138, 141, 143, 144, 149, 156, 158
Offset: 1

Views

Author

N. J. A. Sloane, Dec 25 2006

Keywords

Comments

A great deal is known about the number of conjugacy classes in the classical linear groups. See for example Dornhoff, Section 38, or Green.

References

  • Dornhoff, Larry, Group representation theory. Part A: Ordinary representation theory. Marcel Dekker, Inc., New York, 1971.

Crossrefs

Programs

  • Magma
    [ NumberOfClasses(PSL(2,p)) : p in [2,3,5,7,11,13,17,19,23,29,31,37] ];

Formula

a(n) = (prime(n) + 5)/2 for all n > 1. - Robin Visser, Sep 24 2023

Extensions

More terms from Klaus Brockhaus, Dec 26 2006

A124679 a(n) = number of conjugacy classes in PSL_3(prime(n)).

Original entry on oeis.org

6, 12, 30, 22, 132, 64, 306, 130, 552, 870, 334, 472, 1722, 634, 2256, 2862, 3540, 1264, 1522, 5112, 1804, 2110, 6972, 8010, 3172, 10302, 3574, 11556, 4000, 12882, 5422, 17292, 18906, 6490, 22350, 7654, 8272, 8914, 28056, 30102, 32220, 10984
Offset: 1

Views

Author

N. J. A. Sloane, Dec 25 2006

Keywords

Crossrefs

Programs

  • Magma
    A124679 := func< n | NumberOfClasses(PSL(3,NthPrime(n))) >;

Extensions

a(7) to a(14) from Klaus Brockhaus, Dec 26 2006
a(15)..a(54) appended, from running MAGMA for 7 processor days at U. Newcastle, by Jason Kimberley, Feb 25 2011.
a(65)=32764 added to a124679.txt by Jason Kimberley, Mar 28 2011.

A206820 a(n) is the sum of the squares of the sizes of the conjugacy classes in the symmetric group A_n.

Original entry on oeis.org

1, 1, 3, 42, 914, 23694, 1048542, 45379878, 3272115926, 257662344206, 27726935045366, 3101635433302996, 474878584235678020, 76786899439922296204, 15844064187141655171020, 3326909755872288926885670, 897661138669999282018222470, 246381314116108359863665821750
Offset: 1

Views

Author

Olivier Gérard, Feb 12 2012

Keywords

Comments

a(n) is the sum over all elements of Alt_n of the size of their conjugacy class. Each conjugacy class is thus counted as many times as its size, giving a sum of squares.

Examples

			For n=5, a(5) = 1 + 12^2 + 12^2 + 15^2 + 20^2 = 914.
The class equation of A_5 is  1 + 12 + 12 + 15 + 20  = 60 = 5!/2
		

Crossrefs

A087132 (sequence for S_n), A000702 (conjugacy classes in A_n)

Programs

  • GAP
    A206820 := n -> Sum(ConjugacyClasses(AlternatingGroup(n)), c->Size(c)^2); # Eric M. Schmidt, Jan 26 2014

Extensions

More terms from Eric M. Schmidt, Jan 26 2014

A070733 Size of largest conjugacy class in A_n, the alternating group on n symbols.

Original entry on oeis.org

1, 1, 1, 4, 20, 90, 630, 3360, 30240, 226800, 2494800, 23950080, 311351040, 3632428800, 54486432000, 747242496000, 12703122432000, 200074178304000, 3801409387776000, 67580611338240000, 1419192838103040000, 28100018194440192000, 646300418472124416000
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002

Keywords

Comments

For n > 5, the largest conjugacy class in A_n corresponds to the cycle type (n-2, 2) if n is even, (n-3, 2, 1) if n is odd. - Eric M. Schmidt, Sep 13 2014

Crossrefs

Programs

  • GAP
    a:=function(n)
    local G,CC,SCC,SCC1;
    G:=AlternatingGroup(n);
    CC:=ConjugacyClasses(G);;
    SCC:=List(CC,Size);
    return Maximum(SCC);
    end;;  #  W. Edwin Clark, Feb 02 2014
    
  • Mathematica
    a[n_] := (n!/2) / If[OddQ[n],  n-3, n-2]; a[1] = a[2] = a[3] = 1; a[4] = 4; a[5] = 20; Array[a, 20] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = if(n < 6, [1, 1, 1, 4, 20][n], (n!/2) / if(n % 2,  n-3, n-2)); \\ Amiram Eldar, Jul 12 2025

Formula

For n > 5, a(n) = n!/(2(n-2)) if n is even, a(n) = n!/(2(n-3)) if n is odd. - Eric M. Schmidt, Sep 13 2014
Sum_{n>=1} 1/a(n) = 111/10 + 1/e - 3*e. - Amiram Eldar, Jul 12 2025

Extensions

More terms from Eric M. Schmidt, Sep 13 2014

A073584 Commuting even permutations: number of ordered pairs g, h in the alternating group A_n such that gh = hg.

Original entry on oeis.org

1, 1, 9, 48, 300, 2520, 22680, 282240, 3265920, 43545600, 618710400, 10298534400, 171243072000, 3138418483200, 61460695296000, 1286751578112000, 27743619391488000, 640237370572800000, 15448927751921664000, 394130125324615680000, 10422552203028725760000, 288306186674956369920000
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003

Keywords

Crossrefs

Formula

For n>=2 : a(n) = (n!/2) * A000702(n).

Extensions

More terms from N. J. A. Sloane (based on A000702), Dec 31 2006

A124681 a(n) = number of conjugacy classes in PSL_4(prime(n)).

Original entry on oeis.org

14, 29, 49, 217, 757, 613, 1327, 3661, 6409, 6349, 15457, 13057, 17707, 40789, 53137, 37993, 104581, 57757, 152797
Offset: 1

Views

Author

N. J. A. Sloane, Dec 25 2006

Keywords

Crossrefs

Programs

  • Magma
    A124681 := func< n | NumberOfClasses(PSL(4,NthPrime(n))) >;

Extensions

a(5) and a(6) from Klaus Brockhaus, Dec 26 2006 and Oct 09 2010
a(7)..a(14) appended, from running MAGMA for 32 processor hours at U. Newcastle, by Jason Kimberley, Feb 09 2011.
a(15)-a(19) from Robin Visser, Oct 01 2023

A327150 Number of orbits of the direct square of the alternating group A_n^2 where A_n acts by conjugation.

Original entry on oeis.org

1, 1, 1, 9, 22, 77, 400, 2624, 20747, 183544, 1826374, 20045348, 240262047, 3120641718, 43665293393, 654731266933, 10472819759734, 178001257647196, 3203520381407270, 60859480965537820, 1217072840308660049
Offset: 0

Views

Author

Derek Lim, Aug 23 2019

Keywords

Examples

			For n = 3, representatives of the n=9 orbits are (e,e), (e,(123)), (e,(132)), ((123),e), ((132),e), ((123),(123)), ((123),(132)), ((132),(123)), ((132),(132)), where e is the identity.
		

Crossrefs

Programs

  • GAP
    G:= AlternatingGroup(n);; Size(G)*Sum(List(ConjugacyClasses(G), K -> 1/Size(K)));

Formula

a(n) = (n!/2) * Sum_{K conjugacy class in A_n} 1/|K|.

A237036 Size of the smallest conjugacy class of size greater than 1 of the alternating group of degree n.

Original entry on oeis.org

3, 12, 40, 70, 105, 168, 240, 330, 440, 572, 728, 910, 1120, 1360, 1632, 1938, 2280, 2660, 3080, 3542, 4048, 4600, 5200, 5850, 6552, 7308, 8120, 8990, 9920, 10912, 11968, 13090, 14280, 15540, 16872, 18278, 19760, 21320, 22960, 24682, 26488, 28380, 30360, 32430
Offset: 4

Views

Author

W. Edwin Clark, Feb 02 2014

Keywords

Examples

			For n = 4 the conjugacy classes of size greater than 1 of Alt(n) are
{(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)},
{(2,4,3), (1,2,3), (1,3,4), (1,4,2)},
{(2,3,4), (1,2,4), (1,3,2), (1,4,3)},
the smallest of which has 3 elements, hence a(4) = 3.
		

Crossrefs

Programs

  • GAP
    a:=function(n)
    local G,CC,SCC,SCC1;
    G:=AlternatingGroup(n);
    CC:=ConjugacyClasses(G);;
    SCC:=List(CC,Size);
    SCC1:=Difference(SCC,[1]);
    return Minimum(SCC1);
    end;;
  • Mathematica
    Join[{3,12,40,70,105},2*Binomial[Range[9,50],3]] (* Harvey P. Dale, Apr 07 2018 *)

Formula

From Alois P. Heinz, Feb 04 2014: (Start)
G.f.: -x^4*(7*x^8-28*x^7+42*x^6-20*x^5-20*x^4+30*x^3-10*x^2-3)/(x-1)^4.
a(n) = 2*C(n,3) = A007290(n) for n>=9. (End)

A371059 Number of conjugacy classes of pairs of commuting elements in the alternating group A_n.

Original entry on oeis.org

1, 1, 9, 14, 22, 44, 74, 160, 256, 462, 817, 1494, 2543, 4427, 7699, 13352, 22616, 38610, 65052, 110004, 182961, 305007, 503299, 830648, 1356227, 2212790, 3583419, 5790836
Offset: 1

Views

Author

Sébastien Palcoux, Mar 11 2024

Keywords

Comments

The number of conjugacy classes of pairs of commuting elements in a finite group G is the cardinality of the set {c(a,b) | a,b in G and ab=ba} where c(a,b) = {(gag^(-1),gbg^(-1)) | g in G}.
It is equal to the number of conjugacy classes within the centralizers of class representatives of G.
This reformulation was employed in the sequence-generating program.
It is also equal to the rank of the modular fusion category Z(Rep(G)), the Drinfeld center of Rep(G).
These reformulations are explained in the linked MathOverflow posts.

References

  • A. Davydov, Bogomolov multiplier, double class-preserving automorphisms, and modular invariants for orbifolds. J. Math. Phys. 55 (2014), no. 9, 092305, 13 pp.

Crossrefs

Cf. A000702.

Programs

  • GAP
    List([1..10],n->Sum(List(ConjugacyClasses(AlternatingGroup(n)),c->NrConjugacyClasses(Centralizer(AlternatingGroup(n),Representative(c))))));
Showing 1-10 of 10 results.