A001286 Lah numbers: a(n) = (n-1)*n!/2.
1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800, 37362124800, 566658892800, 9153720576000, 156920924160000, 2845499424768000, 54420176498688000, 1094805903679488000, 23112569077678080000, 510909421717094400000
Offset: 2
Examples
G.f. = x^2 + 6*x^3 + 36*x^4 + 240*x^5 + 1800*x^6 + 15120*x^7 + 141120*x^8 + ... a(10) = (1+2+3+4+5+6+7+8+9)*(1*2*3*4*5*6*7*8*9) = 16329600. - _Reinhard Zumkeller_, May 15 2010
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 90, ex. 4.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 2..100
- Yasmin Aguillon et al., On Parking Functions and The Tower of Hanoi, arXiv:2206.00541 [math.CO], 2022.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Jeremy L. Martin, Amanda Priestley, and Gabe Udell, Statistics on L-interval parking functions, arXiv:2507.07243 [math.CO], 2025. See p. 7.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 399.
- Jennifer Elder, Pamela E. Harris, Jan Kretschmann, and J. Carlos Martínez Mori, Boolean intervals in the weak order of S_n, arXiv:2306.14734 [math.CO], 2023.
- Lucas Chaves Meyles, Pamela E. Harris, Richter Jordaan, Gordon Rojas Kirby, Sam Sehayek, and Ethan Spingarn, Unit-Interval Parking Functions and the Permutohedron, arXiv:2305.15554 [math.CO], 2023.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Sandi Klavžar, Uroš Milutinović and Ciril Petr, Hanoi graphs and some classical numbers, Expo. Math. 23 (2005), no. 4, 371-378.
- Siegfried Lehr, Jeffrey Shallit, and John Tromp, On the vector space of the automatic reals, Theoret. Comput. Sci. 163 (1996), no. 1-2, 193-210.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Bruhat Graph.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Permutation Ascent.
Crossrefs
Cf. A001710, A052609, A062119, A075181, A060638, A060608, A060570, A060612, A135218, A019538, A053495, A051683, A213168, A278677, A278678, A278679, A008292.
A002868 is an essentially identical sequence.
Column 2 of |A008297|.
Third column (m=2) of triangle |A111596(n, m)|: matrix product of |S1|.S2 Stirling number matrices.
Programs
-
Haskell
a001286 n = sum[1..n-1] * product [1..n-1] -- Reinhard Zumkeller, Aug 01 2011
-
Magma
[(n-1)*Factorial(n)/2: n in [2..25]]; // Vincenzo Librandi, Sep 09 2016
-
Maple
seq(sum(mul(j,j=3..n), k=2..n), n=2..21); # Zerinvary Lajos, Jun 01 2007
-
Mathematica
Table[Sum[n!, {i, 2, n}]/2, {n, 2, 20}] (* Zerinvary Lajos, Jul 12 2009 *) nn=20;With[{a=Accumulate[Range[nn]],t=Range[nn]!},Times@@@Thread[{a,t}]] (* Harvey P. Dale, Jan 26 2013 *) Table[(n - 1) n! / 2, {n, 2, 30}] (* Vincenzo Librandi, Sep 09 2016 *)
-
Maxima
A001286(n):=(n-1)*n!/2$ makelist(A001286(n),n,1,30); /* Martin Ettl, Nov 03 2012 */
-
PARI
a(n)=(n-1)*n!/2 \\ Charles R Greathouse IV, Nov 20 2012
-
Python
from _future_ import division A001286_list = [1] for n in range(2,100): A001286_list.append(A001286_list[-1]*n*(n+1)//(n-1)) # Chai Wah Wu, Apr 11 2018
-
Sage
[(n-1)*factorial(n)/2 for n in range(2, 21)] # Zerinvary Lajos, May 16 2009
Formula
a(n) = Sum_{i=0..n-1} (-1)^(n-i-1) * i^n * binomial(n-1,i). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000 [corrected by Amiram Eldar, May 02 2022]
E.g.f.: x^2/[2(1-x)^2]. - Ralf Stephan, Apr 02 2004
a(n+1) = (-1)^(n+1)*det(M_n) where M_n is the n X n matrix M_(i,j)=max(i*(i+1)/2,j*(j+1)/2). - Benoit Cloitre, Apr 03 2004
Row sums of table A051683. - Alford Arnold, Sep 29 2006
5th binomial transform of A135218: (1, 1, 1, 25, 25, 745, 3145, ...). - Gary W. Adamson, Nov 23 2007
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n)=(-1)^n*f(n,2,-2), (n>=2). - Milan Janjic, Mar 01 2009
a(n) = (n+1)!*Sum_{k=1..n-1} 1/(k^2+3*k+2). - Gary Detlefs, Sep 14 2011
Sum_{n>=2} 1/a(n) = 2*(2 - exp(1) - gamma + Ei(1)) = 1.19924064599..., where gamma = A001620 and Ei(1) = A091725. - Ilya Gutkovskiy, Nov 24 2016
a(n+1) = a(n)*n*(n+1)/(n-1). - Chai Wah Wu, Apr 11 2018
Sum_{n>=2} (-1)^n/a(n) = 2*(gamma - Ei(-1)) - 2/e, where e = A001113 and Ei(-1) = -A099285. - Amiram Eldar, May 02 2022
Comments