A001359 Lesser of twin primes.
3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607
Offset: 1
References
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 6.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 81.
- Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1996, pp. 259-260.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 192-197.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 111-112.
Links
- Chris K. Caldwell, Table of n, a(n) for n = 1..100000
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Abhinav Aggarwal, Zekun Xu, Oluwaseyi Feyisetan, and Nathanael Teissier, On Primes, Log-Loss Scores and (No) Privacy, arXiv:2009.08559 [cs.LG], 2020.
- Chris K. Caldwell, First 100000 Twin Primes
- Chris K. Caldwell, Twin Primes
- Chris K. Caldwell, Largest known twin primes
- Chris K. Caldwell, Twin primes
- Chris K. Caldwell, The prime pages
- P. A. Clement, Congruences for sets of primes, American Mathematical Monthly, vol. 56,1 (1949), 23-25.
- Harvey Dubner, Twin Prime Statistics, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.2.
- Andrew Granville and Greg Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004; Amer. Math. Monthly, 113 (No. 1, 2006), 1-33.
- José Antonio Hervás Contreras, ¿Nueva propiedad de los primos gemelos?
- Thomas R. Nicely, Some Results of Computational Research in Prime Numbers [See local copy in A007053]
- Thomas R. Nicely, Enumeration to 10^14 of the twin primes and Brun's constant, Virginia Journal of Science, 46:3 (Fall, 1995), 195-204.
- Thomas R. Nicely, Enumeration to 10^14 of the twin primes and Brun's constant [Local copy, pdf only]
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Waldemar Puszkarz, Statistical Bias in the Distribution of Prime Pairs and Isolated Primes, vixra:1804.0416 (2018).
- Fred Richman, Generating primes by the sieve of Eratosthenes
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- P. Shiu, A Diophantine Property Associated with Prime Twins, Experimental mathematics 14 (1) (2005).
- Jonathan Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010; Amer. Math. Monthly, 116 (2009) 630-635.
- Jonathan Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
- Jonathan Sondow and Emmanuel Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 4.
- Terence Tao, Obstructions to uniformity and arithmetic patterns in the primes, arXiv:math/0505402 [math.NT], 2005.
- Apoloniusz Tyszka, On sets X subset of N for which we know an algorithm that computes a threshold number t(X) in N such that X is infinite if and only if X contains an element greater than t(X), 2019.
- Eric Weisstein's World of Mathematics, Twin Primes
- Index entries for primes, gaps between
Crossrefs
Subsequence of A003627.
Cf. A001223, A006512 (greater of twin primes), A014574, A001097, A077800, A002822, A040040, A054735, A067829, A082496, A088328, A117078, A117563, A074822, A071538, A007508, A146214, A350246, A350247.
Programs
-
Haskell
a001359 n = a001359_list !! (n-1) a001359_list = filter ((== 1) . a010051' . (+ 2)) a000040_list -- Reinhard Zumkeller, Feb 10 2015
-
Magma
[n: n in PrimesUpTo(1610) | IsPrime(n+2)]; // Bruno Berselli, Feb 28 2011
-
Maple
select(k->isprime(k+2),select(isprime,[$1..1616])); # Peter Luschny, Jul 21 2009 A001359 := proc(n) option remember; if n = 1 then 3; else p := nextprime(procname(n-1)) ; while not isprime(p+2) do p := nextprime(p) ; end do: p ; end if; end proc: # R. J. Mathar, Sep 03 2011
-
Mathematica
Select[Prime[Range[253]], PrimeQ[# + 2] &] (* Robert G. Wilson v, Jun 09 2005 *) a[n_] := a[n] = (p = NextPrime[a[n - 1]]; While[!PrimeQ[p + 2], p = NextPrime[p]]; p); a[1] = 3; Table[a[n], {n, 51}] (* Jean-François Alcover, Dec 13 2011, after R. J. Mathar *) nextLesserTwinPrime[p_Integer] := Block[{q = p + 2}, While[NextPrime@ q - q > 2, q = NextPrime@ q]; q]; NestList[nextLesserTwinPrime@# &, 3, 50] (* Robert G. Wilson v, May 20 2014 *) Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==2&][[All,1]] (* Harvey P. Dale, Jan 04 2021 *) q = Drop[Prepend[p = Prime[Range[100]], 2], -1]; Flatten[q[[#]] & /@ Position[p - q, 2]] (* Horst H. Manninger, Mar 28 2021 *)
-
PARI
A001359(n,p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0,); p-2} /* The following gives a reasonably good estimate for any value of n from 1 to infinity; compare to A146214. */ A001359est(n) = solve( x=1,5*n^2/log(n+1), 1.320323631693739*intnum(t=2.02,x+1/x,1/log(t)^2)-log(x) +.5 - n) /* The constant is A114907; the expression in front of +.5 is an estimate for A071538(x) */ \\ M. F. Hasler, Dec 10 2008
-
Python
from sympy import primerange, isprime print([n for n in primerange(1, 2001) if isprime(n + 2)]) # Indranil Ghosh, Jul 20 2017
Formula
a(n) = A077800(2n-1).
a(n) = prime(A029707(n)). - R. J. Mathar, Feb 19 2017
Comments