cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 900 results. Next

A052350 Least prime in A001359 (lesser of twin primes) such that the distance (A053319) to the next twin is 6*n.

Original entry on oeis.org

5, 17, 41, 617, 71, 311, 2267, 521, 1877, 461, 1721, 347, 1151, 1787, 3581, 2141, 6449, 1319, 21377, 1487, 12251, 4799, 881, 23057, 659, 19541, 12377, 2381, 38747, 10529, 37361, 8627, 9041, 33827, 5879, 80231, 15359, 45821, 36107, 14627, 37991, 36527, 87251, 70997
Offset: 1

Views

Author

Labos Elemer, Mar 07 2000

Keywords

Comments

Smallest distance (A052380) and also smallest possible increment of twin-distances is 6.
Primes may occur between p+2 and p+6n.
The prime a(n) determines a prime quadruple: [p, p+2, p+6n, p+6n+2] and a [2, 6n-2, 2] d-pattern.

Examples

			The first 3 terms (5, 17, 41) are followed by difference patterns as it is displayed: 5 by [2, 4, 2], 17 by [2, 4+6, 2], 41 by [2, 4+6+6, 2] determining prime quadruples: (5, 7, 11, 13), (17, 19, 29, 31) or (41, 43, 59, 61), respectively.
a(10) = 461 gives the quadruple [461, 463, 521 = 461+60, 523], and between 521 and 463, 7 primes occur.
		

Crossrefs

Programs

  • Mathematica
    NextLowerTwinPrim[n_] := Block[{k = n + 6}, While[ !PrimeQ[k] || !PrimeQ[k + 2], k += 6]; k];p = 5; t = Table[0, {50}]; Do[ q = NextLowerTwinPrim[p]; d = (q - p)/6; If[d < 51 && t[[d]] == 0, t[[d]] = p; Print[{d, p}]]; p = q, {n, 1500}]; t (* Robert G. Wilson v, Oct 28 2005 *)
  • PARI
    list(len) = {my(s = vector(len), c = 0, p1 = 5, q1 = 0, q2, d); forprime(p2 = 7, , if(p2 == p1 + 2, q2 = p1; if(q1 > 0, d = (q2 - q1)/6; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 04 2025

Extensions

Name corrected by Amiram Eldar, Mar 04 2025

A078859 Least positive residues (mod 210) representing those residue classes which can be the lesser of twin prime pairs (A001359).

Original entry on oeis.org

3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 167, 179, 191, 197, 209
Offset: 1

Views

Author

Labos Elemer, Dec 13 2002

Keywords

Crossrefs

Programs

  • Mathematica
    With[{n = 4}, Function[P, Join[Select[Prime@ Range@ n, NextPrime@ # == # + 2 &], Select[Partition[Select[Range[P + 1], CoprimeQ[#, P] &], 2, 1], Differences@ # == {2} &][[All, 1]]]]@ Product[Prime@ i, {i, n}]] (* Michael De Vlieger, May 15 2017 *)

Formula

Intersection[RRS(210), 2+RRS{210)]-2 and {3, 5}. RRS(210)=reduced residue system of 210=first 48=phi(210) terms of A008364; two additional term 3 and 5 are singular cases; 210k+r generates complete A001359 with suitable k and r taken from these 15+2 numbers.

A127552 Decimal expansion of the number 3.19644719338616871113868629540207517... having continued fraction expansion 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, ... (lesser of twin primes A001359).

Original entry on oeis.org

3, 1, 9, 6, 4, 4, 7, 1, 9, 3, 3, 8, 6, 1, 6, 8, 7, 1, 1, 1, 3, 8, 6, 8, 6, 2, 9, 5, 4, 0, 2, 0, 7, 5, 1, 7, 0, 8, 1, 9, 3, 4, 3, 1, 0, 9, 5, 0, 6, 2, 2, 9, 6, 9, 8, 6, 8, 3, 5, 7, 2, 6, 6, 9, 2, 9, 9, 9, 7, 4, 2, 6, 6, 8, 7, 5, 8, 1, 3, 0, 2, 1, 7, 7, 0, 1, 3, 0, 2, 7, 7, 0, 4, 1, 4, 2, 0, 6, 1, 5
Offset: 1

Views

Author

Artur Jasinski, Jan 18 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[Prime[n] + 2], AppendTo[a, Prime[n]]], {n, 2, 500}]; RealDigits[N[FromContinuedFraction[a], 100]][[1]]

Extensions

a(100) corrected by Sean A. Irvine, Jul 09 2023

A097489 a(n) = product of first n terms of A001359.

Original entry on oeis.org

3, 15, 165, 2805, 81345, 3335145, 196773555, 13970922405, 1411063162905, 150983758430835, 20684774905024395, 3082031460848634855, 551683631491905639045, 105371573614953977057595, 20758200002145933480346215, 4712111400487126900038590805
Offset: 1

Views

Author

Cino Hilliard, Aug 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[Times,Select[Partition[Prime[Range[50]],2,1],#[[2]]-#[[1]]==2&][[All,1]]] (* Harvey P. Dale, Oct 09 2020 *)
  • PARI
    twinl(n) = { local(c,x); c=0; x=1; while(c
    				

Extensions

Edited by Don Reble, Apr 16 2007
a(15)-a(16) from Amiram Eldar, Jul 07 2024

A242807 Smallest lesser of twin primes (A001359) with index n, or a(n)=0, if there are no such twin primes.

Original entry on oeis.org

3, 11, 29, 59, 137, 101, 2309, 1151, 521, 1427, 1229, 419, 5849, 3119, 5417, 10271, 1607, 9629, 1019, 809, 13217, 9239, 15581, 8819, 29021, 84059, 13679, 18911, 14867, 45119, 54401, 60647, 60089, 142589, 78137, 61979, 179381, 26681, 123377, 293861, 89519
Offset: 1

Views

Author

Vladimir Shevelev, May 23 2014

Keywords

Comments

For definition of index of twin primes pair, see A242767.
We conjecture that, for every n, a(n)>0.

Crossrefs

Extensions

More terms from Peter J. C. Moses, May 26 2014

A242881 Positions of lesser of twin primes in A001359 with index 2.

Original entry on oeis.org

3, 4, 10, 12, 14, 15, 23, 32, 33, 37, 39, 50, 58, 60, 64, 66, 82, 86, 90, 91, 93, 111, 112, 114, 128, 139, 143, 155, 157, 158, 162, 167, 171, 179, 190, 197, 198, 199, 207, 223, 226, 231, 241, 248, 255, 262, 270, 280, 282, 286, 293, 306, 313, 317, 318, 325, 327
Offset: 1

Views

Author

Vladimir Shevelev, May 25 2014

Keywords

Comments

For the definition of the index of a twin primes pair, see the comment in A242767.

Crossrefs

Extensions

More terms from Peter J. C. Moses, May 25 2014

A359636 a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have at least n distinct prime factors.

Original entry on oeis.org

7, 19, 643, 51427, 8083633, 1077940147, 75582271489, 34710483181813
Offset: 1

Views

Author

Hugo Pfoertner, Jan 12 2023

Keywords

Comments

a(9) <= 76340177205657727, a(10) <= 225096507194749219819. - David A. Corneth, Jan 12 2023

Examples

			a(1) = 7: trivially, the 3 composites 8 = 2^3, 9 = 3^2, 10 = 2*5, have at least one distinct prime factor;
a(2) = 19: 20 = 2^2*5, 21 = 3*7, 22 = 2*11 all have 2 distinct prime factors;
a(3) = 643: 644 = 2^2*7*23, 645 = 3*5*43, 646 = 2*17*19, 647 is prime.
		

Crossrefs

Programs

  • PARI
    a359636(maxp) = {my (k=1, pp=3); forprime (p=5, maxp, my(mi=oo); if (p-pp>2, for (j=pp+1, p-1, my(mo=omega(j)); if (mo=k, print1(pp,", "); k++)); pp=p)};
    a359636(10^7)

Extensions

a(8) from Martin Ehrenstein, Nov 03 2023

A242913 Positions of smaller of twin primes in A001359 with index 3.

Original entry on oeis.org

5, 6, 8, 17, 19, 29, 38, 44, 45, 46, 52, 54, 55, 65, 67, 71, 78, 80, 87, 95, 96, 97, 103, 106, 113, 119, 121, 124, 135, 136, 138, 152, 166, 187, 188, 191, 192, 208, 209, 212, 217, 237, 253, 254, 259, 269, 271, 275, 277, 288, 300, 308, 316, 320, 331, 349, 355
Offset: 1

Views

Author

Vladimir Shevelev, May 26 2014

Keywords

Comments

For the definition of the index of a twin prime pair, see the comment in A242767.

Crossrefs

Programs

Extensions

More terms from Peter J. C. Moses, May 26 2014

A247867 a(n) is the smallest prime in the interval [k*sqrt(k), k*sqrt(k+2)], where k = A001359(n), or a(n)=0 if there is no prime in this interval.

Original entry on oeis.org

0, 13, 37, 71, 157, 263, 457, 599, 1019, 1109, 1607, 1823, 2399, 2647, 2767, 3433, 3697, 4421, 4721, 5501, 6469, 8581, 8951, 9901, 11897, 13577, 14669, 15329, 16229, 16921, 23011, 23531, 23789, 25097, 26153, 32531, 33107, 33997, 34583, 36037, 39079, 43093
Offset: 1

Views

Author

Vladimir Shevelev, Sep 25 2014

Keywords

Comments

The sequence is partly connected with conjecture in A247834. In turn, we conjecture that all terms a(n)>0 for n>1.

Examples

			For n=1, k=A001359(1)=3, we have the interval [3*sqrt(3), 3*sqrt(5)] = [5.1...,6.7...] which does not contain a prime. So, a(1)=0.
For n=2, k=5, we have the interval [5*sqrt(5), 5*sqrt(7)] = [11.1..., 13.2...] which contains only one prime: 13. So, a(2)=13.
		

Crossrefs

Programs

  • Maple
    p:= 1: q:= 2: count:= 0:
    while count < 100 do
      if q = p+2 then
        count:= count+1;
        r:= nextprime(floor(p*sqrt(p)));
        if r^2 < p^2*q then A[count]:= r
        else A[count]:= 0 fi;
      fi;
      p:= q; q:= nextprime(p);
    od:
    seq(A[i],i=1..100); # Robert Israel, Apr 08 2018
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprime(q=p+2), pmin = nextprime(ceil(p*sqrt(p))); if (pmin <= floor(p*sqrt(q)), val = pmin, val = 0); print1(val, ", ");););} \\ Michel Marcus, Sep 25 2014

Extensions

More terms from Michel Marcus, Sep 25 2014

A248891 Number of primes p such that p+2 is prime and A001359(n) < p < A001359(n)^(1+1/n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 3, 2, 4, 3, 4, 4, 3, 4, 3, 3, 2, 1, 2, 3, 2, 2, 5, 4, 3, 2, 1, 1, 4, 3, 2, 3, 4, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 6, 9, 8, 8, 7, 7, 7, 8, 7, 6, 6, 5, 4, 3, 3, 3, 2, 7, 6, 5, 5, 5, 4, 3, 2, 5, 5, 8, 9, 11, 10, 10, 9, 9, 8, 7, 7, 6, 6, 6, 5, 4, 5, 8, 8
Offset: 1

Views

Author

Keywords

Comments

Conjecture: For every positive integer n, A001359(n+1)^(1/(n+1)) < A001359(n)^(1/n). Note that this conjecture is equivalent to " A001359 is infinite and for every n, A001359(n+1) < A001359(n)^(1+1/n). This implies for every n, a(n) is positive. See comment lines of the sequence A001359.

Examples

			Take n=1, A001359(1)=3, 3 < 5 < 3^(1+1/1)=9 hence a(1)=1.
Take n=6, A001359(6)=41, 41 < 59 < 71 < 41^(1+1/6)~76.13 hence a(6)=2.
		

Crossrefs

Showing 1-10 of 900 results. Next