A001542 a(n) = 6*a(n-1) - a(n-2) for n > 1, a(0)=0 and a(1)=2.
0, 2, 12, 70, 408, 2378, 13860, 80782, 470832, 2744210, 15994428, 93222358, 543339720, 3166815962, 18457556052, 107578520350, 627013566048, 3654502875938, 21300003689580, 124145519261542, 723573111879672
Offset: 0
Examples
G.f. = 2*x + 12*x^2 + 70*x^3 + 408*x^4 + 2378*x^5 + 13860*x^6 + ...
References
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
- Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
- P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), 181-193.
- Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
- Hacène Belbachir, Soumeya Merwa Tebtoub, László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- H. Brocard, Notes élémentaires sur le problème de Peel, Nouvelle Correspondance Mathématique, 4 (1878), 161-169.
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
- S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
- R. J. Hetherington, Letter to N. J. A. Sloane, Oct 26 1974.
- J. M. Katri and D. R. Byrkit, Problem E1976, Amer. Math. Monthly, 75 (1968), 683-684.
- Tanya Khovanova, Recursive Sequences.
- E. Kilic, Y. T. Ulutas, and N. Omur, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011) #11.5.6, Table 3, k=1.
- D. H. Lehmer, On the multiple solutions of the Pell equation, Annals Math., 30 (1928), 66-72.
- D. H. Lehmer, On the multiple solutions of the Pell equation (annotated scanned copy).
- Mathematical Reflections, Solution to Problem O271, Issue 5, 2013, p 22.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
- Mark A. Shattuck, Tiling proofs of some formulas for the Pell numbers of odd index, Integers, 9 (2009), 53-64.
- R. A. Sulanke, Moments, Narayana numbers and the cut and paste for lattice paths.
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Crossrefs
Programs
-
GAP
a:=[0,2];; for n in [3..20] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
Haskell
a001542 n = a001542_list !! n a001542_list = 0 : 2 : zipWith (-) (map (6 *) $ tail a001542_list) a001542_list -- Reinhard Zumkeller, Aug 14 2011
-
Magma
I:=[0,2]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 23 2019
-
Maple
A001542:=2*z/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation seq(combinat:-fibonacci(2*n, 2), n = 0..20); # Peter Luschny, Jun 28 2018
-
Mathematica
LinearRecurrence[{6, -1}, {0, 2}, 30] (* Harvey P. Dale, Jun 11 2011 *) Fibonacci[2*Range[0,20], 2] (* G. C. Greubel, Dec 23 2019 *) Table[2 ChebyshevU[-1 + n, 3], {n, 0, 20}] (* Herbert Kociemba, Jun 05 2022 *)
-
Maxima
a[0]:0$ a[1]:2$ a[n]:=6*a[n-1]-a[n-2]$ A001542(n):=a[n]$ makelist(A001542(x),x,0,30); /* Martin Ettl, Nov 03 2012 */
-
PARI
{a(n) = imag( (3 + 2*quadgen(8))^n )}; /* Michael Somos, Jan 20 2017 */
-
PARI
vector(21, n, 2*polchebyshev(n-1, 2, 33) ) \\ G. C. Greubel, Dec 23 2019
-
Python
l=[0, 2] for n in range(2, 51): l+=[6*l[n - 1] - l[n - 2], ] print(l) # Indranil Ghosh, Jun 06 2017
-
Sage
[2*chebyshev_U(n-1,3) for n in (0..20)] # G. C. Greubel, Dec 23 2019
Formula
a(n) = 2*A001109(n).
a(n) = ((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) / (2*sqrt(2)).
G.f.: 2*x/(1-6*x+x^2).
a(n) = sqrt(2*(A001541(n))^2 - 2)/2. - Barry E. Williams, May 07 2000
a(n) = (C^(2n) - C^(-2n))/sqrt(8) where C = sqrt(2) + 1. - Gary W. Adamson, May 11 2003
For all terms x of the sequence, 2*x^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 10 2002
For n > 0: a(n) = A001652(n) + A046090(n) - A001653(n); e.g., 70 = 119 + 120 - 169. Also a(n) = A001652(n - 1) + A046090(n - 1) + A001653(n - 1); e.g., 70 = 20 + 21 + 29. Also a(n)^2 + 1 = A001653(n - 1)*A001653(n); e.g., 12^2 + 1 = 145 = 5*29. Also a(n + 1)^2 = A084703(n + 1) = A001652(n)*A001652(n + 1) + A046090(n)*A046090(n + 1). - Charlie Marion, Jul 01 2003
a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))/(2*sqrt(2)). - Antonio Alberto Olivares, Dec 24 2003
2*A001541(k)*A001653(n)*A001653(n+k) = A001653(n)^2 + A001653(n+k)^2 + a(k)^2; e.g., 2*3*5*29 = 5^2 + 29^2 + 2^2; 2*99*29*5741 = 29^2 + 5741^2 + 70^2. - Charlie Marion, Oct 12 2007
a(n) = sinh(2*n*arcsinh(1))/sqrt(2). - Herbert Kociemba, Apr 24 2008
a(n) = 3*a(n-1) + 2*A001541(n-1); e.g., a(4) = 70 = 3*12 + 2*17. - Zak Seidov, Dec 19 2013
Sum {n >= 1} 1/( a(n) + 1/a(n) ) = 1/2. - _Peter Bala, Mar 25 2015
E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Dec 07 2016
a(n) = -a(-n) for all n in Z. - Michael Somos, Jan 20 2017
From A.H.M. Smeets, May 28 2017: (Start)
A051009(n) = a(2^(n-2)).
a(2n) = 2*a(2)*A001541(n).
Comments