cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001589 a(n) = 4^n + n^4.

Original entry on oeis.org

1, 5, 32, 145, 512, 1649, 5392, 18785, 69632, 268705, 1058576, 4208945, 16797952, 67137425, 268473872, 1073792449, 4295032832, 17179952705, 68719581712, 274878037265, 1099511787776, 4398046705585, 17592186278672
Offset: 0

Views

Author

Keywords

Comments

a(n) is prime if and only if n = 1. - Reinhard Zumkeller, May 24 2009
The statement above (and the corollary that 5 is the only prime term in this sequence) can be proved using Sophie Germain's identity x^4 + 4y^4 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2). - Alonso del Arte, Oct 31 2013 [exponents corrected by Thomas Ordowski, Nov 29 2017]

Crossrefs

Programs

Formula

G.f.: -(5*x^5 + 38*x^4 + 43*x^3 - 17*x^2 + 4*x - 1) / ((x - 1)^5*(4*x - 1)). - Colin Barker, Jan 01 2013

A001593 a(n) = 5^n + n^5.

Original entry on oeis.org

1, 6, 57, 368, 1649, 6250, 23401, 94932, 423393, 2012174, 9865625, 48989176, 244389457, 1221074418, 6104053449, 30518337500, 152588939201, 762940872982, 3814699155193, 19073488804224, 95367434840625, 476837162287226, 2384185796169257, 11920928961514468
Offset: 0

Views

Author

Keywords

Comments

a(24) is prime; a(1036) and a(104824) are probable primes (3-PRP). - David Radcliffe, Dec 23 2016

Crossrefs

Programs

Formula

G.f.: (4*x^6+135*x^5+289*x^4+84*x^3-36*x^2+5*x-1) / ((x-1)^6*(5*x-1)). - Colin Barker, May 07 2013

Extensions

More terms from Colin Barker, May 07 2013

A001594 a(n) = 6^n + n^6.

Original entry on oeis.org

1, 7, 100, 945, 5392, 23401, 93312, 397585, 1941760, 10609137, 61466176, 364568617, 2179768320, 13065520825, 78371693632, 470196375201, 2821126684672, 16926683582305, 101559990680640, 609359787056377
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. sequences of the form k^n+n^k: A001580 (k=2), A001585 (k=3), A001589 (k=4), A001593 (k=5), this sequence (k=6), A001596 (k=7), A198401 (k=8), A185277 (k=9), A177068 (k=10), A177069 (k=11).

Programs

  • Magma
    [6^n+n^6: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
    
  • Maple
    seq(seq(k^n+n^k, k=6..6), n=0..19); # Zerinvary Lajos, Jun 29 2007
  • Mathematica
    Table[6^n + n^6, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 6 x + 72 x^2 - 75 x^3 - 1475 x^4 - 1776 x^5 - 334 x^6 - 7 x^7)/((1-x)^7 (1-6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 28 2014 *)
    LinearRecurrence[{13,-63,161,-245,231,-133,43,-6},{1,7,100,945,5392,23401,93312,397585},20] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    a(n)=6^n+n^6 \\ Charles R Greathouse IV, Feb 14 2011
    
  • Sage
    [6^n+n^6 for n in (0..30)] # Bruno Berselli, Aug 28 2014

Formula

G.f.: (1 - 6*x + 72*x^2 - 75*x^3 - 1475*x^4 - 1776*x^5 - 334*x^6 - 7*x^7)/((1-x)^7*(1-6*x)). - Vincenzo Librandi, Aug 28 2014

A001596 a(n) = 7^n + n^7.

Original entry on oeis.org

1, 8, 177, 2530, 18785, 94932, 397585, 1647086, 7861953, 45136576, 292475249, 1996813914, 13877119009, 96951758924, 678328486353, 4747732369318, 33233199005057, 232630924325880, 1628414210130481
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [7^n+n^7: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
  • Maple
    seq(seq(k^n+n^k, k=7..7), n=0..18); # Zerinvary Lajos, Jun 29 2007
  • Mathematica
    f[n_]:=7^n+n^7;f[Range[0,40]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)
    LinearRecurrence[{15,-84,252,-462,546,-420,204,-57,7},{1,8,177,2530,18785,94932,397585,1647086,7861953},20] (* Harvey P. Dale, Sep 16 2018 *)
  • PARI
    a(n)=7^n+n^7
    

A055652 Table T(m,k)=m^k+k^m (with 0^0 taken to be 1) as square array read by antidiagonals.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 32, 54, 32, 6, 1, 1, 7, 57, 145, 145, 57, 7, 1, 1, 8, 100, 368, 512, 368, 100, 8, 1, 1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1, 1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1, 1, 11, 593, 7073
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2000

Keywords

Crossrefs

Columns and rows are A000012 (apart from first term), A000027, A001580, A001585, A001589, A001593 etc. Diagonals include A013499 (apart from first two terms), A051442, A051489.
Cf. A055651.
Contribution from Franklin T. Adams-Watters, Oct 26 2009: (Start)
Main diagonal is 2 * A000312. More diagonals: A051442, A051489, A155539.
Cf. A076980, A156353, A156354. (End)

Formula

E.g.f. Sum(n,m, T(n,m)/(n! m!)) = e^(x e^y) + e^(y e^x). [From Franklin T. Adams-Watters, Oct 26 2009]

A185277 a(n) = n^9 + 9^n.

Original entry on oeis.org

1, 10, 593, 20412, 268705, 2012174, 10609137, 45136576, 177264449, 774840978, 4486784401, 33739007300, 287589316833, 2552470327702, 22897453501745, 205929575454024, 1853088908328577, 16677300287543066, 150094833656289489
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. sequences of the form k^n+n^k: A001580 (k=2), A001585 (k=3), A001589 (k=4), A001593 (k=5), A001594 (k=6), A001596 (k=7), A198401 (k=8), this sequence (k=9), A177068 (k=10), A177069 (k=11).

Programs

  • Magma
    [9^n+n^9: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
    
  • Mathematica
    Table[9^n + n^9, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 9 x + 538 x^2 + 9970 x^3 - 43028 x^4 - 638168 x^5 - 1317266 x^6 - 779618 x^7 - 130925 x^8 - 4527 x^9 - 8 x^10)/((1 - x)^10 (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 28 2014 *)
    LinearRecurrence[{19,-135,525,-1290,2142,-2478,2010,-1125,415,-91,9},{1,10,593,20412,268705,2012174,10609137,45136576,177264449,774840978,4486784401},20] (* Harvey P. Dale, Jun 08 2023 *)
  • PARI
    for(n=0,25, print1(n^9 + 9^n, ", ")) \\ G. C. Greubel, Jun 25 2017
  • Sage
    [9^n+n^9 for n in (0..30)] # Bruno Berselli, Aug 28 2014
    

Formula

G.f.: (1 - 9*x + 538*x^2 + 9970*x^3 - 43028*x^4 - 638168*x^5-1317266*x^6 - 779618*x^7 - 130925*x^8 - 4527*x^9 - 8*x^10)/((1-x)^10*(1-9*x)). - Vincenzo Librandi, Aug 28 2014

A177069 11^n + n^11.

Original entry on oeis.org

1, 12, 2169, 178478, 4208945, 48989176, 364568617, 1996813914, 8804293473, 33739007300, 125937424601, 570623341222, 3881436747409, 36314872537968, 383799398752905, 4185897925275026, 45967322049616577, 505481300395601404
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Crossrefs

Cf. sequences of the form k^n+n^k: A001580 (k=2), A001585 (k=3), A001589 (k=4), A001593 (k=5), A001594 (k=6), A001596 (k=7), A198401 (k=8), A185277 (k=9), A177068 (k=10), this sequence (k=11).

Programs

  • Magma
    [11^n+n^11: n in [0..20]]
    
  • Mathematica
    Table[11^n + n^11, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 11 x + 2091 x^2 + 130021 x^3 + 524976 x^4 -14501046 x^5 - 91394082 x^6 - 163229406 x^7 - 104915271 x^8 - 24085951 x^9 - 1676905 x^10 - 22407 x^11 - 10 x^12)/((1 - x)^12 (1 - 11 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 28 2014 *)
  • PARI
    a(n)= 11^n+n^11 \\ Charles R Greathouse IV, Jan 11 2012
    
  • Sage
    [11^n+n^11 for n in (0..30)] # Bruno Berselli, Aug 28 2014

Formula

G.f.: (1 - 11*x + 2091*x^2 + 130021*x^3 + 524976*x^4 - 14501046*x^5 - 91394082*x^6 - 163229406*x^7 - 104915271*x^8 - 24085951*x^9 - 1676905*x^10 - 22407*x^11 - 10*x^12) / ((1-x)^12*(1-11*x)). - Vincenzo Librandi, Aug 28 2014

A198401 a(n) = 8^n + n^8.

Original entry on oeis.org

1, 9, 320, 7073, 69632, 423393, 1941760, 7861953, 33554432, 177264449, 1173741824, 8804293473, 69149458432, 550571544609, 4399522300160, 35186934979457, 281479271677952, 2251806789442689, 18014409529442560, 144115205059418913
Offset: 0

Views

Author

Vincenzo Librandi, Oct 27 2011

Keywords

Crossrefs

Programs

  • Magma
    [8^n+n^8: n in [0..20]]
    
  • Mathematica
    f[n_] := 8^n + n^8; f[Range[0, 30]]
    LinearRecurrence[{17,-108,372,-798,1134,-1092,708,-297,73,-8},{1,9,320,7073,69632,423393,1941760,7861953,33554432,177264449},30] (* Harvey P. Dale, Aug 26 2023 *)
  • PARI
    a(n)=8^n+n^8 \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: -(9*x^9 +1966*x^8 +34133*x^7 +120575*x^6 +109459*x^5 +18599*x^4 -2233*x^3 -275*x^2 +8*x -1) / ((x -1)^9*(8*x -1)). - Colin Barker, Sep 13 2013

A109273 Numbers k such that k+1 is the smallest prime factor of k^3 + 3^k.

Original entry on oeis.org

1, 4, 10, 16, 22, 28, 40, 52, 58, 70, 88, 100, 112, 130, 136, 148, 196, 232, 238, 250, 256, 280, 310, 316, 352, 382, 400, 418, 430, 442, 478, 490, 556, 562, 592, 598, 616, 640, 682, 742, 772, 796, 808, 820, 862, 880, 928, 970, 976, 1030, 1048, 1060, 1096, 1102
Offset: 1

Views

Author

Zak Seidov and Max Alekseyev, Jun 25 2005

Keywords

Comments

Except for the first term, 2k+1 is composite.

Crossrefs

Cf. A001585.

Programs

  • PARI
    isok(n) = factor(n^3+3^n)[1, 1] == (n+1); \\ Michel Marcus, Oct 06 2013

A253471 Numbers k such that 3^k + k^3 is prime.

Original entry on oeis.org

2, 56, 10112, 63880, 78296, 125330, 222748, 1839730
Offset: 1

Views

Author

Michel Lagneau, Jan 01 2015

Keywords

Comments

All terms == 2 or 4 mod 6. - Robert Israel, Jan 01 2015

Examples

			2 is in the sequence because 3^2 + 2^3 = 17 is prime.
56 is in the sequence because 3^56 + 56^3 = 523347633027360537213687137 is prime.
		

Crossrefs

Cf. A001585 (3^n + n^3), A064539 (2^n + n^2 is prime), A094133 (Leyland primes).

Programs

  • Maple
    select(t -> isprime(3^t+t^3), [seq(seq(6*i+j, j=[2,4]), i=0..100)]); # Robert Israel, Jan 01 2015
  • Mathematica
    Do[If[PrimeQ[3^n+n^3], Print[n]], {n, 0, 12000}]
  • PARI
    is(n)=ispseudoprime(3^n+n^3) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(4)-a(7) from Hans Havermann, Apr 30 2015
a(8) from Ryan Propper, Jun 27 2023
Showing 1-10 of 11 results. Next