A001610 a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 2.
0, 2, 3, 6, 10, 17, 28, 46, 75, 122, 198, 321, 520, 842, 1363, 2206, 3570, 5777, 9348, 15126, 24475, 39602, 64078, 103681, 167760, 271442, 439203, 710646, 1149850, 1860497, 3010348, 4870846, 7881195, 12752042, 20633238, 33385281, 54018520
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Daniel Birmajer, Juan B. Gil, Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv:1505.06339 [math.NT], 2015.
- Ning-Ning Cao and Feng-Zhen Zhao, Some Properties of Hyperfibonacci and Hyperlucas Numbers, J. Int. Seq. 13 (2010) # 10.8.8.
- Ligia L. Cristea, Ivica Martinjak, and Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, Journal of Integer Sequences, Vol. 19, 2016, Issue 7, #16.7.6.
- Taras Goy and Mark Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence F_n-1, Online J. Anal. Comb. (2025) Vol. 19, Paper 1, 1-26.
- Petros Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), Article 16.8.2.
- Fumio Hazama, Spectra of graphs attached to the space of melodies, Discrete Math., 311 (2011), 2368-2383. See Table 2.1.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 96.
- Kantaphon Kuhapatanakul, On the Sums of Reciprocal Generalized Fibonacci Numbers, J. Int. Seq. 16 (2013) #13.7.1.
- Rui Liu and Feng-Zhen Zhao, On the Sums of Reciprocal Hyperfibonacci Numbers and Hyperlucas Numbers, Journal of Integer Sequences, Vol. 15 (2012), #12.4.5. - From _N. J. A. Sloane_, Oct 05 2012
- Richard J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, sequence a_{1,s}, arXiv:0903.2514 [math.NT], 2009-2011.
- El-Mehdi Mehiri, Saad Mneimneh, and Hacène Belbachir, The Towers of Fibonacci, Lucas, Pell, and Jacobsthal, arXiv:2502.11045 [math.CO], 2025. See p. 12.
- Natascha Neumärker, Realizability of Integer Sequences as Differences of Fixed Point Count Sequences, Journal of Integer Sequences 12 (2009) 09.4.5, Example 10.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Adityanarayanan Radhakrishnan, Liam Solus, and Caroline Uhler. Counting Markov equivalence classes for DAG models on trees, arXiv:1706.06091 [math.CO], 2017; Discrete Applied Mathematics 244 (2018): 170-185.
- Vladimir Shevelev, On divisibility of C(n-i-1,i-1) by i, Int. J. of Number Theory, 3 (2007), no.1, 119-139. [_Vladimir Shevelev_, Apr 23 2010]
- Eric Weisstein's World of Mathematics, Graph Rank
- Eric Weisstein's World of Mathematics, Lucas Cube Graph
- John W. Wrench, Jr., Evaluation of Artin's constant and the twin-prime constant, Math. Comp., 15 (1961), 396-398.
- Li-Na Zheng, Rui Liu, and Feng-Zhen Zhao, On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers, Journal of Integer Sequences, Vol. 17 (2014), #14.1.4.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Crossrefs
Programs
-
GAP
List([0..40], n-> Lucas(1,-1,n+1)[2] -1); # G. C. Greubel, Jul 12 2019
-
Haskell
a001610 n = a001610_list !! n a001610_list = 0 : 2 : map (+ 1) (zipWith (+) a001610_list (tail a001610_list)) -- Reinhard Zumkeller, Aug 21 2011
-
Magma
I:=[0,2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)+1: n in [1..40]]; // Vincenzo Librandi, Mar 20 2015
-
Magma
[Lucas(n+1) -1: n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
t = {0, 2}; Do[AppendTo[t, t[[-1]] + t[[-2]] + 1], {n, 2, 40}]; t RecurrenceTable[{a[n] == a[n - 1] +a[n - 2] +1, a[0] == 0, a[1] == 2}, a, {n, 0, 40}] (* Robert G. Wilson v, Apr 13 2013 *) CoefficientList[Series[x (2 - x)/((1 - x - x^2) (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *) Table[Fibonacci[n] + Fibonacci[n + 2] - 1, {n, 0, 40}] (* Eric W. Weisstein, Feb 13 2018 *) LinearRecurrence[{2, 0, -1}, {2, 3, 6}, 20] (* Eric W. Weisstein, Feb 13 2018 *) Table[LucasL[n] - 1, {n, 20}] (* Eric W. Weisstein, Aug 01 2023 *) LucasL[Range[20]] - 1 (* Eric W. Weisstein, Aug 01 2023 *)
-
PARI
a(n)=([0,1,0; 0,0,1; -1,0,2]^n*[0;2;3])[1,1] \\ Charles R Greathouse IV, Sep 08 2016
-
PARI
vector(40, n, f=fibonacci; f(n+1)+f(n-1)-1) \\ G. C. Greubel, Jul 12 2019
-
Sage
[lucas_number2(n+1,1,-1) -1 for n in (0..40)] # G. C. Greubel, Jul 12 2019
Formula
G.f.: x*(2-x)/((1-x-x^2)*(1-x)) = (2*x-x^2)/(1-2*x+x^3). [Simon Plouffe in his 1992 dissertation]
a(n) = F(n) + F(n+2) - 1 where F(n) is the n-th Fibonacci number. - Zerinvary Lajos, Jan 31 2008
a(n) = Sum_{i=1..floor((n+1)/2)} ((n+1)/i)*C(n-i,i-1). In more general case of polynomials Q_n(x)=a(n,x) (see our comment) we have Q_n(x) = Sum_{i=1..floor((n+1)/2)}((n+1)/i)*C(n-i,i-1)*x^(i-1). - Vladimir Shevelev, Apr 23 2010
a(n) = Sum_{k=0..n-1} Lucas(k), where Lucas(n) = A000032(n). - Gary Detlefs, Dec 07 2010
a(0)=0, a(1)=2, a(2)=3; for n>=3, a(n) = 2*a(n-1) - a(n-3). - George F. Johnson, Jan 28 2013
For n > 1, a(n) = A048162(n+1) + 3. - Toby Gottfried, Apr 13 2013
For n > 0, a(n) = A169985(n + 1) - 1. - Gus Wiseman, Feb 12 2019
Comments