A001911 a(n) = Fibonacci(n+3) - 2.
0, 1, 3, 6, 11, 19, 32, 53, 87, 142, 231, 375, 608, 985, 1595, 2582, 4179, 6763, 10944, 17709, 28655, 46366, 75023, 121391, 196416, 317809, 514227, 832038, 1346267, 2178307, 3524576, 5702885, 9227463, 14930350, 24157815, 39088167, 63245984
Offset: 0
Examples
G.f. = x + 3*x^2 + 6*x^3 + 11*x^4 + 19*x^5 + 32*x^6 + 53*x^7 + 87*x^8 + ...
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 233.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..4783 (next term has 1001 digits)
- Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016.
- D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.
- C. Dalfó, G. Erskine, G. Exoo, M. A. Fiol, N. López, A. Messegué, and J. Tuite, On large regular (1,1,k)-mixed graphs, Discrete Appl. Math. 356 (2024), 209-228.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- K. Viswanathan Iyer and K. R. Uday Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009. (Corrigendum: Eq.(23) to be corrected as follows on the right-side: in the fourth term F(k)-1 should be replaced by F(k); a term F(k)*F(K+1)-1 is to be included; pointed out by Emeric Deutsch).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- M. Rigo, P. Salimov, and E. Vandomme, Some Properties of Abelian Return Words, Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
- D. G. Rogers, An application of renewal sequences to the dimer problem, pp. 142-153 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences, 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Crossrefs
Cf. A001611, A000071, A157725, A001911, A157726, A006327, A157727, A157728, A157729, A167616. [Added by N. J. A. Sloane, Jun 25 2010 in response to a comment from Aviezri S. Fraenkel]
Partial sums of A000045(n+1).
Right-hand column 3 of triangle A011794.
See also A165910.
Subsequence of A226538.
Column k=3 of A261019.
Programs
-
Haskell
a001911 n = a001911_list !! n a001911_list = 0 : 1 : map (+ 2) (zipWith (+) a001911_list $ tail a001911_list) -- Reinhard Zumkeller, Jun 18 2013
-
Magma
[(Fibonacci(n+3))-2: n in [0..85]]; // Vincenzo Librandi, Apr 23 2011
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2]+2 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005 A001911:=(1+z)/(z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation with another offset a:= n-> (Matrix([[0,-1,1]]). Matrix([[1,1,0], [1,0,0], [2,0,1]])^n)[1,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
-
Mathematica
Table[Fibonacci[n+3] -2, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *) LinearRecurrence[{2,0,-1}, {0,1,3}, 40] (* Harvey P. Dale, Jun 06 2011 *) Fibonacci[Range[3,40]]-2 (* Harvey P. Dale, Jun 28 2015 *)
-
PARI
a(n)=fibonacci(n+3)-2 \\ Charles R Greathouse IV, Mar 14 2012
-
SageMath
[fibonacci(n+3)-2 for n in range(60)] # G. C. Greubel, Oct 21 2024
Formula
From Michael Somos, Jun 09 1999: (Start)
a(n) = A000045(n+3) - 2.
a(n) = a(n-1) + a(n-2) + 2, a(0) = 0, a(1) = 1. (End)
G.f.: x*(1+x)/((1-x)*(1-x-x^2)).
Sum of consecutive pairs of A000071 (partial sums of Fibonacci numbers). - Paul Barry, Apr 17 2004
a(n) = A101220(2, 1, n). - Ross La Haye, Jan 28 2005
a(n) = term (1,1) in the 1 X 3 matrix [0,-1,1].[1,1,0; 1,0,0; 2,0,1]^n. - Alois P. Heinz, Jul 24 2008
a(0) = 0, a(1) = 1, a(2) = 3, a(n) = 2*a(n-1)-a(n-3). - Harvey P. Dale, Jun 06 2011
Eigensequence of an infinite lower triangular matrix with the natural numbers as the left border and (1, 0, 1, 0, ...) in all other columns. - Gary W. Adamson, Jan 30 2012
a(n) = (-2+(2^(-n)*((1-sqrt(5))^n*(-2+sqrt(5))+(1+sqrt(5))^n*(2+sqrt(5))))/sqrt(5)). - Colin Barker, May 12 2016
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5 - 2*exp(x). - Stefano Spezia, May 08 2022
Extensions
More terms and better description from Michael Somos
Comments