cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A061419 a(n) = ceiling(a(n-1)*3/2) with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 27, 41, 62, 93, 140, 210, 315, 473, 710, 1065, 1598, 2397, 3596, 5394, 8091, 12137, 18206, 27309, 40964, 61446, 92169, 138254, 207381, 311072, 466608, 699912, 1049868, 1574802, 2362203, 3543305, 5314958, 7972437, 11958656
Offset: 1

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

It appears that this sequence is the (L)-sieve transform of {3,6,9,12,...,3n,...} = A008585. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 06 2009

Examples

			a(6) = ceiling(8*3/2) = 12.
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.30.1, p. 196.

Crossrefs

First differences are in A073941.

Programs

  • Magma
    [ n eq 1 select 1 else Ceiling(Self(n-1)*3/2): n in [1..40] ]; // Klaus Brockhaus, Nov 14 2008
    
  • Maple
    a:=proc(n) option remember: if n=1 then 1 else ceil(procname(n-1)*3/2) fi; end; seq(a(n),n=1..40); # Muniru A Asiru, Jun 07 2018
  • Mathematica
    a=1;a=Table[a=Ceiling[a*3/2],{n,0,4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    NestList[Ceiling[3#/2]&,1,39] (* Stefano Spezia, Dec 08 2024 *)
  • PARI
    { a=2/3; for (n=1, 500, write("b061419.txt", n, " ", a=ceil(a*3/2)) ) } \\ Harry J. Smith, Jul 22 2009
    
  • Python
    from itertools import islice
    def A061419_gen(): # generator of terms
        a = 2
        while True:
            yield a-1
            a += a>>1
    A061419_list = list(islice(A061419_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A061418(n) - 1 = floor(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003
a(1) = 1, a(n) = A070885(n)/3. - Benoit Cloitre, Aug 18 2002
a(n) = ceiling((a(n-1) + a(n-2))*9/10) - Franklin T. Adams-Watters, May 01 2006

A061418 a(n) = floor(a(n-1)*3/2) with a(1) = 2.

Original entry on oeis.org

2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 141, 211, 316, 474, 711, 1066, 1599, 2398, 3597, 5395, 8092, 12138, 18207, 27310, 40965, 61447, 92170, 138255, 207382, 311073, 466609, 699913, 1049869, 1574803, 2362204, 3543306, 5314959, 7972438
Offset: 1

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

Can be stated as the number of animals starting from a single pair if any pair of animals can produce a single offspring (as in the game Minecraft, if the player allows offspring to fully grow before breeding again). - Denis Moskowitz, Dec 05 2012
Maximum number of partial products that can be added in a Wallace tree multiplier with n-1 full adder stages. - Chinmaya Dash, Aug 19 2020

Examples

			a(6) = floor(9*3/2) = 13.
		

Crossrefs

First differences are in A073941.

Programs

  • Magma
    [ n eq 1 select 2 else Floor(Self(n-1)*(3/2)): n in [1..39] ]; // Klaus Brockhaus, Nov 14 2008
    
  • PARI
    { a=4/3; for (n=1, 500, a=a*3\2; write("b061418.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 22 2009
    
  • PARI
    first(n) = my(v=vector(n)); v[1]=2; for(i=2, n, v[i]=v[i-1]*3\2); v \\ Iain Fox, Jul 15 2022
    
  • Python
    from itertools import islice
    def A061418_gen(): # generator of terms
        a = 2
        while True:
            yield a
            a += a>>1
    A061418_list = list(islice(A061418_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A061419(n) + 1 = ceiling(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003

A006999 Partitioning integers to avoid arithmetic progressions of length 3.

Original entry on oeis.org

0, 1, 2, 4, 7, 11, 17, 26, 40, 61, 92, 139, 209, 314, 472, 709, 1064, 1597, 2396, 3595, 5393, 8090, 12136, 18205, 27308, 40963, 61445, 92168, 138253, 207380, 311071, 466607, 699911, 1049867, 1574801, 2362202, 3543304, 5314957, 7972436
Offset: 0

Views

Author

N. J. A. Sloane, D. R. Hofstadter, and James Propp, Jul 15 1977

Keywords

Comments

a(n) = A006997(3^n-1).
It appears that, aside from the first term, this is the (L)-sieve transform of A016789 ={2,5,8,11,...,3n+2....}. This has been verified up to a(30)=311071. See A152009 for the definition of the (L)-sieve transform. - John W. Layman, Nov 20 2008
a(n) is also the largest-index square reachable in n jumps if we start at square 0 of the Infinite Sidewalk. - Jose Villegas, Mar 27 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A061419, A061418, A005428 (first differences), A083286.
Cf. A003312.

Programs

  • Haskell
    a006999 n = a006999_list !! n
    a006999_list = 0 : map ((`div` 2) . (+ 2) . (* 3)) a006999_list
    -- Reinhard Zumkeller, Oct 26 2011
  • Mathematica
    a[0] = 0; a[n_] := a[n] = Floor[(3 a[n-1] + 2)/2];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 01 2018 *)
  • PARI
    a(n)=if(n<1,0,floor((3*a(n-1)+2)/2))
    

Formula

a(n) = A061419(n) - 1.
a(n) = A061418(n) - 2.
a(n) = floor((3a(n-1)+2)/2).
a(n) = -1 + floor(c*(3/2)^n) where c=1.0815136... - Benoit Cloitre, Jan 10 2002; this constant c is 2/3*K(3) (see A083286). - Ralf Stephan, May 29 2003
a(n+1) = (3*a(n))/2+1 if a(n) is even. a(n+1) = (3*a(n)+1)/2 if a(n) is odd. - Miquel Cerda, Jun 15 2019

Extensions

More terms from James Sellers, Feb 06 2000

A070885 a(n) = (3/2)*a(n-1) if a(n-1) is even; (3/2)*(a(n-1)+1) if a(n-1) is odd.

Original entry on oeis.org

1, 3, 6, 9, 15, 24, 36, 54, 81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, 7191, 10788, 16182, 24273, 36411, 54618, 81927, 122892, 184338, 276507, 414762, 622143, 933216, 1399824, 2099736, 3149604, 4724406, 7086609, 10629915
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2002

Keywords

Comments

The smallest positive number such that A024629(a(n)) has n digits, per page 9 of the Tanton reference in Links. - Glen Whitney, Sep 17 2017

References

  • Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002, p. 123.

Crossrefs

The constant K is 2/3*K(3) (see A083286). - Ralf Stephan, May 29 2003
Cf. A003312.
Cf. A081848.
Cf. A205083 (parity of terms).

Programs

  • Haskell
    a070885 n = a070885_list !! (n-1)
    a070885_list = 1 : map (flip (*) 3 . flip div 2 . (+ 1)) a070885_list
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Maple
    A070885 := proc(n)
        option remember;
        if n = 1 then
            return 1;
        elif type(procname(n-1),'even') then
            procname(n-1) ;
        else
            procname(n-1)+1 ;
        end if;
        %*3/2 ;
    end proc:
    seq(A070885(n),n=1..80) ; # R. J. Mathar, Jun 18 2018
  • Mathematica
    NestList[If[EvenQ[#],3/2 #,3/2 (#+1)]&,1,40] (* Harvey P. Dale, May 18 2018 *)
  • Python
    from itertools import islice
    def A070885_gen(): # generator of terms
        a = 1
        while True:
            yield a
            a += (a+1>>1)+(a&1)
    A070885_list = list(islice(A070885_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

For n > 1, a(n) = 3*A061419(n) = 3*floor(K*(3/2)^n) where K=1.08151366859... - Benoit Cloitre, Aug 18 2002
a(n) = 3*ceiling(a(n-1)/2). - Benoit Cloitre, Apr 25 2003
a(n+1) = a(n) + A081848(n), for n > 1. - Reinhard Zumkeller, Sep 05 2014

A100585 a(n+1) = a(n)+floor(a(n)/3), a(1) = 3.

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 13, 17, 22, 29, 38, 50, 66, 88, 117, 156, 208, 277, 369, 492, 656, 874, 1165, 1553, 2070, 2760, 3680, 4906, 6541, 8721, 11628, 15504, 20672, 27562, 36749, 48998, 65330, 87106, 116141, 154854, 206472, 275296, 367061, 489414, 652552
Offset: 1

Views

Author

N. J. A. Sloane, Dec 01 2004

Keywords

Comments

Original definition: Write down the numbers from 3 to infinity. Take next number, M say, that has not been crossed off. Counting through the numbers that have not yet been crossed off after that M, cross off every 4th term. Repeat, always crossing off every 4th term of those that remain. The numbers that are left form the sequence.
Can be stated as the number of animals starting from a single trio if any trio of animals can produce a single offspring. See A061418 for the equivalent sequence for pairs of animals. - Luca Khan, Sep 05 2024

Crossrefs

Programs

  • Maple
    R:= 3: x:= 3:
    for i from 2 to 100 do x:= x + floor(x/3); R:= R,x od:
    R; # Robert Israel, Sep 09 2024
  • Mathematica
    t = Range[3, 2500000]; r = {}; While[Length[t] > 0, AppendTo[r, First[t]]; t = Drop[t, {1, -1, 4}];]; r (* Ray Chandler, Dec 02 2004 *)
    NestList[#+Floor[#/3]&,3,50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n,s=3)=for(i=2,n,s+=s\3);s \\ M. F. Hasler, Oct 06 2014

Formula

a(1)=3, a(n+1) = a(n) + floor(a(n)/3). - Ben Paul Thurston, Jan 09 2008

Extensions

More terms from Ray Chandler, Dec 02 2004
Simpler definition from M. F. Hasler, Oct 06 2014

A003311 Write down the numbers from 3 to infinity. Take next number, M say, that has not been crossed off. Counting through the numbers that have not yet been crossed off after that M, cross off the first, (M+1)st, (2M+1)st, (3M+1)st, etc. Repeat. The numbers that are left form the sequence.

Original entry on oeis.org

3, 5, 8, 11, 15, 18, 23, 27, 32, 38, 42, 47, 53, 57, 63, 71, 75, 78, 90, 93, 98, 105, 113, 117, 123, 132, 137, 140, 147, 161, 165, 168, 176, 183, 188, 197, 206, 212, 215, 227, 233, 237, 243, 252, 258, 267, 278, 282, 287, 293, 303, 312, 317, 323
Offset: 1

Views

Author

Keywords

Examples

			The first few sieving stages are as follows:
  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
  3 X 5 6 X 8 9 XX 11 12 XX 14 15 XX 17 18 XX 20 ...
  3 X 5 X X 8 9 XX 11 12 XX XX 15 XX 17 18 XX 20 ...
  3 X 5 X X 8 X XX 11 12 XX XX 15 XX 17 18 XX 20 ...
  3 X 5 X X 8 X XX 11 XX XX XX 15 XX 17 18 XX 20 ...
  3 X 5 X X 8 X XX 11 XX XX XX 15 XX XX 18 XX 20 ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003311 n = a003311_list !! (n-1)
    a003311_list = f [3..] where
       f (x:xs) = x : f (g xs) where
         g zs = us ++ g vs where (_:us, vs) = splitAt x zs
    -- Reinhard Zumkeller, Nov 12 2014

Extensions

Entry revised Nov 29 2004

A100586 Write down the numbers from 3 to infinity. Take next number, M say, that has not been crossed off. Counting through the numbers that have not yet been crossed off after that M, cross off every 5th term. Repeat, always crossing off every 5th term of those that remain. The numbers that are left form the sequence.

Original entry on oeis.org

3, 4, 5, 6, 7, 9, 11, 14, 17, 21, 26, 32, 40, 50, 62, 77, 96, 120, 150, 187, 234, 292, 365, 456, 570, 712, 890, 1112, 1390, 1737, 2171, 2714, 3392, 4240, 5300, 6625, 8281, 10351, 12939, 16174, 20217, 25271, 31589, 39486, 49357, 61696, 77120
Offset: 1

Views

Author

N. J. A. Sloane, Dec 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    t = Range[3, 80000]; r = {}; While[Length[t] > 0, AppendTo[r, First[t]]; t = Drop[t, {1, -1, 5}];]; r (* Ray Chandler, Dec 02 2004 *)
Showing 1-7 of 7 results.