A003506 Triangle of denominators in Leibniz's Harmonic Triangle a(n,k), n >= 1, 1 <= k <= n.
1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 30, 20, 5, 6, 30, 60, 60, 30, 6, 7, 42, 105, 140, 105, 42, 7, 8, 56, 168, 280, 280, 168, 56, 8, 9, 72, 252, 504, 630, 504, 252, 72, 9, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 11, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 11
Offset: 1
Examples
The triangle begins: 1; 1/2, 1/2; 1/3, 1/6, 1/3; 1/4, 1/12, 1/12, 1/4; 1/5, 1/20, 1/30, 1/20, 1/5; ... The triangle of denominators begins: 1 2 2 3 6 3 4 12 12 4 5 20 30 20 5 6 30 60 60 30 6 7 42 105 140 105 42 7 8 56 168 280 280 168 56 8 9 72 252 504 630 504 252 72 9 10 90 360 840 1260 1260 840 360 90 10 11 110 495 1320 2310 2772 2310 1320 495 110 11
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, see 130.
- B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 38.
- G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
- M. Elkadi and B. Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 35.
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- F. S. Al-Kharousi, A. Umar, and M. M. Zubairu, On injective partial Catalan monoids, arXiv:2501.00285 [math.GR], 2024. See pp. 8-9.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993.
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
- Yilmaz Simsek, Construction of a generalization of the Leibnitz numbers and their properties, arXiv:2011.13701 [math.NT], 2020.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle
Crossrefs
Programs
-
Haskell
a003506 n k = a003506_tabl !! (n-1) !! (n-1) a003506_row n = a003506_tabl !! (n-1) a003506_tabl = scanl1 (\xs ys -> zipWith (+) (zipWith (+) ([0] ++ xs) (xs ++ [0])) ys) a007318_tabl a003506_list = concat a003506_tabl -- Reinhard Zumkeller, Nov 14 2013, Nov 17 2011
-
Maple
with(combstruct):for n from 0 to 11 do seq(m*count(Combination(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Apr 09 2008 A003506 := (n,k) -> k*binomial(n,k): seq(print(seq(A003506(n,k),k=1..n)),n=1..7); # Peter Luschny, May 27 2011
-
Mathematica
L[n_, 1] := 1/n; L[n_, m_] := L[n, m] = L[n - 1, m - 1] - L[n, m - 1]; Take[ Flatten[ Table[ 1 / L[n, m], {n, 1, 12}, {m, 1, n}]], 66] t[n_, m_] = Gamma[n]/(Gamma[n - m]*Gamma[m]); Table[Table[t[n, m], {m, 1, n - 1}], {n, 2, 12}]; Flatten[%] (* Roger L. Bagula and Gary W. Adamson, Sep 14 2008 *) Table[k*Binomial[n,k],{n,1,7},{k,1,n}] (* Peter Luschny, May 27 2011 *) t[n_, k_] := Denominator[n!*k!/(n+k+1)!]; Table[t[n-k, k] , {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013 *)
-
PARI
A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^(i-1)*(1-x)^(j-1)),x,1))
-
PARI
A(i,j)=if(i<1||j<1,0,1/sum(k=0,i-1,(-1)^k*binomial(i-1,k)/(j+k)))
-
PARI
{T(n, k) = (n + 1 - k) * binomial( n, k - 1)} /* Michael Somos, Feb 06 2011 */
-
SageMath
T_row = lambda n: (n*(x+1)^(n-1)).list() for n in (1..10): print(T_row(n)) # Peter Luschny, Feb 04 2017 # Assuming offset 0: def A003506(n, k): return falling_factorial(n+1,n)//(factorial(k)*factorial(n-k)) for n in range(9): print([A003506(n, k) for k in range(n+1)]) # Peter Luschny, Aug 13 2022
Formula
a(n, 1) = 1/n; a(n, k) = a(n-1, k-1) - a(n, k-1) for k > 1.
Considering the integer values (rather than unit fractions): a(n, k) = k*C(n, k) = n*C(n-1, k-1) = a(n, k-1)*a(n-1, k-1)/(a(n, k-1) - a(n-1, k-1)) = a(n-1, k) + a(n-1, k-1)*k/(k-1) = (a(n-1, k) + a(n-1, k-1))*n/(n-1) = k*A007318(n, k) = n*A007318(n-1, k-1). Row sums of integers are n*2^(n-1) = A001787(n); row sums of the unit fractions are A003149(n-1)/A000142(n). - Henry Bottomley, Jul 22 2002
From Vladeta Jovovic, Nov 01 2003: (Start)
G.f.: x*y/(1-x-y*x)^2.
E.g.f.: x*y*exp(x+x*y). (End)
T(n,k) = n*binomial(n-1,k-1) = n*A007318(n-1,k-1). - Philippe Deléham, Aug 04 2006
Binomial transform of A128064(unsigned). - Gary W. Adamson, Aug 29 2007
From Roger L. Bagula and Gary W. Adamson, Sep 14 2008: (Start)
t(n,m) = Gamma(n)/(Gamma(n - m)*Gamma(m)).
f(s,n) = Integral_{x=0..oo} exp(-s*x)*x^n dx = Gamma(n)/s^n; t(n,m) = f(s,n)/(f(s,n-m)*f(s,m)) = Gamma(n)/(Gamma(n - m)*Gamma(m)); the powers of s cancel out. (End)
From Reinhard Zumkeller, Mar 05 2010: (Start)
T(n,5) = T(n,n-4) = A174002(n-4) for n > 4.
T(2*n,n) = T(2*n,n+1) = A005430(n). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-2,k-2), T(1,1) = 1 and, for n > 1, T(n,k) = 0 if k <= 1 or if k > n. - Philippe Deléham, Mar 17 2012
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+1-k,k+1-i). - Mircea Merca, Apr 11 2012
If we include a main diagonal of zeros so that the array is in the form
0
1 0
2 2 0
3 6 3 0
4 12 12 4 0
...
then we obtain the exponential Riordan array [x*exp(x),x], which factors as [x,x]*[exp(x),x] = A132440*A007318. This array is the infinitesimal generator for A116071. A signed version of the array is the infinitesimal generator for A215652. - Peter Bala, Sep 14 2012
a(n,k) = (n-1)!/((n-k)!(k-1)!) if k > n/2 and a(n,k) = (n-1)!/((n-k-1)!k!) otherwise. [Forms 'core' for Pascal's recurrence; gives common term of RHS of T(n,k) = T(n-1,k-1) + T(n-1,k)]. - Jon Perry, Oct 08 2013
Assuming offset 0: T(n, k) = FallingFactorial(n + 1, n) / (k! * (n - k)!). The counterpart using the rising factorial is A356546. - Peter Luschny, Aug 13 2022
Extensions
Edited by N. J. A. Sloane, Oct 07 2007
Comments