cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002064 Cullen numbers: a(n) = n*2^n + 1.

Original entry on oeis.org

1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, 92274689, 192937985, 402653185, 838860801, 1744830465, 3623878657, 7516192769, 15569256449, 32212254721, 66571993089
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A084859. Inverse binomial transform is A004277. - Paul Barry, Jun 12 2003
Let A be the Hessenberg matrix of order n defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1] =-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 26 2010
Indices of primes are listed in A005849. - M. F. Hasler, Jan 18 2015
Add the list of fractions beginning with 1/2 + 3/4 + 7/8 + ... + (2^n - 1)/2^n and take the sums pairwise from left to right. For 1/2 + 3/4 = 5/4, 5 + 4 = 9 = a(2); for 5/4 + 7/8 = 17/8, 17 + 8 = 25 = a(3); for 17/8 + 15/16 = 49/16, 49 + 16 = 65 = a(4); for 49/16 + 31/32 = 129/32, 129 + 32 = 161 = a(5). For each pairwise sum a/b, a + b = n*2^(n+1). - J. M. Bergot, May 06 2015
Number of divisors of (2^n)^(2^n). - Gus Wiseman, May 03 2021
Named after the Irish Jesuit priest James Cullen (1867-1933), who checked the primality of the terms up to n=100. - Amiram Eldar, Jun 05 2021

Examples

			G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - _Michael Somos_, Jul 18 2018
		

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • R. K. Guy, Unsolved Problems in Number Theory, B20.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 240-242.
  • W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal k = n + 1 of A046688.
A000005 counts divisors of n.
A000312 = n^n.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.
A173339 lists positions of squares in A062319.
A188385 gives the highest prime exponent in n^n.
A249784 counts divisors of n^n^n.

Programs

Formula

a(n) = 4a(n-1) - 4a(n-2) + 1. - Paul Barry, Jun 12 2003
a(n) = sum of row (n+1) of triangle A130197. Example: a(3) = 25 = (12 + 8 + 4 + 1), row 4 of A130197. - Gary W. Adamson, May 16 2007
Row sums of triangle A134081. - Gary W. Adamson, Oct 07 2007
Equals row sums of triangle A143038. - Gary W. Adamson, Jul 18 2008
Equals row sums of triangle A156708. - Gary W. Adamson, Feb 13 2009
G.f.: -(1-2*x+2*x^2)/((-1+x)*(2*x-1)^2). a(n) = A001787(n+1)+1-A000079(n). - R. J. Mathar, Nov 16 2007
a(n) = 1 + 2^(n + log_2(n)) ~ 1 + A000079(n+A004257(n)). a(n) ~ A000051(n+A004257(n)). - Jonathan Vos Post, Jul 20 2008
a(0)=1, a(1)=3, a(2)=9, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - Harvey P. Dale, Oct 13 2011
a(n) = A036289(n) + 1 = A003261(n) + 2. - Reinhard Zumkeller, Mar 16 2013
E.g.f.: 2*x*exp(2*x) + exp(x). - Robert Israel, Dec 12 2014
a(n) = 2^n * A000325(n) = 4^n * A186947(-n) for all n in Z. - Michael Somos, Jul 18 2018
a(n) = Sum_{i=0..n-1} a(i) + A000325(n+1). - Ivan N. Ianakiev, Aug 07 2019
a(n) = sigma((2^n)^(2^n)) = A000005(A057156(n)) = A062319(2^n). - Gus Wiseman, May 03 2021
Sum_{n>=0} 1/a(n) = A340841. - Amiram Eldar, Jun 05 2021

Extensions

Edited by M. F. Hasler, Oct 31 2012

A329193 a(n) = floor(log_2(n^3)) = floor(3 log_2(n)).

Original entry on oeis.org

0, 3, 4, 6, 6, 7, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18
Offset: 1

Views

Author

M. F. Hasler, Nov 07 2019

Keywords

Comments

3*A000523(n) <= A000523(n^3) = a(n) <= A004257(n^3) <= A029837(n^3) <= 3*A029837(n) with equality for powers of 2 (A000079) and asymptotic equivalence as n -> oo.

Crossrefs

Cf. A000578 (n^3), A000523 (floor log_2), A004257 (round log_2), A029837 (ceiling log_2), A329202 (log_2(n^2)).

Programs

  • PARI
    apply( A329193(n)=exponent(n^3), [1..99]) \\ exponent(.) = logint(.,2) = log(.)\log(2)

A092757 Partial sums of round(log_2(n)).

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 134, 139, 144, 149, 154, 159, 164, 169, 174, 179, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274
Offset: 1

Views

Author

Jorge Coveiro, Apr 13 2004

Keywords

Crossrefs

Cf. A092919. - R. J. Mathar, Sep 08 2008

Programs

  • Maple
    A004257 := proc(n) option remember ; round(log[2](n)) ; end: A092757 := proc(n) local i ; add( A004257(i),i=1..n) ; end: for n from 1 to 100 do printf("%d,",A092757(n)) ; od: # R. J. Mathar, Sep 08 2008
  • Mathematica
    Accumulate[Round[Log[2,Range[60]]]] (* Harvey P. Dale, Apr 15 2018 *)

Formula

a(n)= sum_{i=1..n} A004257(i). - R. J. Mathar, Sep 08 2008

Extensions

Corrected and extended by Pab Ter (pabrlos(AT)yahoo.com), May 24 2004
Changed from a(3) on by R. J. Mathar, Sep 08 2008

A225668 a(n) = floor(4*log_2(n)).

Original entry on oeis.org

0, 4, 6, 8, 9, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24
Offset: 1

Views

Author

Jonathan Vos Post, May 11 2013

Keywords

Comments

Arises in analysis of "when to clean your room".

Examples

			a(3) = floor(4*log_2(3)) = floor(6.33985000) = 6.
a(8) = floor(4*log_2(8)) = floor(4*3) = 12.
		

Crossrefs

Cf. A000583 (n^4), A000523 (floor log_2), A004257 (round log_2), A029837 (ceiling log_2).
Cf. A329202 (log_2(n^2)), A329193 (log_2(n^3)).

Programs

Formula

a(n) = floor(4*log(n)/log(2)).
a(n) = floor(log_2(n^4)) = A000523(A000583(n)), i.e., this A225668 = A000523 o A000583. - M. F. Hasler, Nov 07 2019

Extensions

Better definition from M. F. Hasler, Nov 07 2019

A258782 Nearest integer to log_2(n!).

Original entry on oeis.org

0, 0, 1, 3, 5, 7, 9, 12, 15, 18, 22, 25, 29, 33, 36, 40, 44, 48, 53, 57, 61, 65, 70, 74, 79, 84, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 149, 154, 159, 165, 170, 175, 181, 186, 192, 197, 203, 209, 214, 220, 226, 231, 237, 243, 249, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314
Offset: 0

Views

Author

Eli Sadoff, Jun 10 2015

Keywords

Examples

			a(6) = round(log_2(6!)) = round(9.49...) = 9.
		

Crossrefs

Programs

  • MATLAB
    for i = 1:20 { disp(round(log2(factorial(i)))) } end
    
  • Magma
    [Round(LogGamma(n+1)/Log(2)): n in [0..70]]; // Bruno Berselli, Jun 23 2015
    
  • Maple
    seq(round(lnGAMMA(n+1)/ln(2)),n=0..100); # Robert Israel, Jun 10 2015
  • Mathematica
    Round[Log[2, Range[0, 100]! ]] (* Giovanni Resta, Jun 10 2015 *)
  • PARI
    a(n) = round(log(n!)/log(2)); \\ Michel Marcus, Jun 10 2015
    
  • PARI
    a(n)=round(lngamma(n+1)/log(2)) \\ Charles R Greathouse IV, Jun 10 2015
    
  • Sage
    [round(log_gamma(n+1)/log2) for n in (0..70)] # Bruno Berselli, Jun 23 2015

Formula

a(n) = round(log_2(n!)).
a(n) = A004257(A000142(n)). - Michel Marcus, Jun 10 2015
a(n) = round(Sum_{k=1..n} log_2(k)). - Tom Edgar, Jun 10 2015
a(n) is within 1 of n*(log(n)-1)/log(2) + log(n)/(2*log(2)) + log(sqrt(2*Pi))/log(2) for n >= 1. - Robert Israel, Jun 10 2015

A329199 a(n) = round(log_3(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

M. F. Hasler, Nov 07 2019

Keywords

Crossrefs

Cf. A062153 (floor log_3), A000523 (floor log_2), A004257 (round log_2), A029837 (ceiling log_2), A329194 (log_3(n^2)).

Programs

  • Mathematica
    Round[Log[3,Range[100]]] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    apply( A329199(n)=log(n)\/log(3), [1..130])
Showing 1-6 of 6 results.